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The possibility o f  state prediction in deterministic chaotic systems, which are described by 
1-D maps, is discussed in the light o f information theory. A quantity h ( l )  is defined which  
represents the production o f uncertainty on a future state by the chaotic dynamics (intrinsic 
noise) after / time steps have passed. h( l )  is related to the Lyapunov characteristic exponent. 
Moreover, the influence o f  the measuring process (overlappings o f mapped boxes o f  state space 
partition) and external noise on the state predictability are investigated quantitatively.

1. Introduction

In recent years one of the most intensively studied 
subjects in physics, chemistry, and other fields have 
been deterministic, dissipative, dynamical systems 
displaying a so-called “chaotic” behaviour. Typical­
ly, two neighbouring orbits of a chaotic system 
diverge on an average exponentially as time in­
creases, which is indicated by a positive Lyapunov 
characteristic exponent (LCE). Thus, if one has no 
exact knowledge on the initial state of the system 
(practically this is always the case due to the limited 
precision of any measurement), a predicted state 
could differ enormously from the actually observed 
one, i.e., long range state predictions are impossible.

The time evolution of the states of a deterministic 
system is usually governed by a set of first-order 
differential equations or in a discrete time version 
by a set of difference equations. If they are suitably 
“well-behaved”, various theorems can be applied 
guaranteeing the uniqueness of any orbit starting 
from a given area of state space. However, any real 
system interacts with its environment in a com­
plicated manner. Consequently, deterministic 
equations have to be modified by stochastic terms 
in order to describe reality. Chaotic orbits sensitive­
ly respond to external fluctuations. Hence, state 
predictions would be limited, even if an initial state 
was known exactly.

In this paper we are first of all interested in the 
effect of a limited knowledge of an initial state on
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the possibility of state prediction. This problem was 
investigated already by several authors [ 1 ] — [7], For 
a detailed investigation Farm er [3] used the quan­
tity 7t representing the (average) information on a 
future state contained in an initial state. 7t is a well- 
known quantity in information theory. Some de­
notations of 7t are “mutual inform ation”, “syn- 
entropy”, and “transinform ation”. (We prefer the 
latter denotation.) The definition of 7t for a dynam­
ical system requires a partition of state space which 
is assumed to be induced by a limited precision of 
measurement and a certain gauging of the (digital) 
measuring equipment. Thus, 7t characterizes the 
symbolic system which is induced by a partition of 
state space (see e.g. [4 -6]). Consequently, an inves­
tigation of 7, is justified from an experimental point 
of view. However, in order to characterize the 
“uncertainty production” of a system itself (and not 
that of the symbolic system only) one should also 
try to investigate quantities which are defined 
independent of a partition of state space. In his 
paper [1] Shaw has done some stimulating work in 
this field. He argued that the uncertainty on a 
future state after one time step is given for simple 
systems by the LCE. It is the purpose of this paper 
to make a contribution to this discussion. In partic­
ular, we will demonstrate that some of Shaw’s 
concepts do not properly reflect reality as they 
break down even for simple systems. We argue that 
uncertainty on a future state is produced in expand­
ing regions of state space only. In contracting 
regions uncertainty is neither produced (if we 
neglect “overlappings”) nor is uncertainty, which is 
simultaneously produced in expanding regions,
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reduced. From this point of view the LCE is found 
to be a lower bound of the uncertainty production 
after one time step.

In this paper we restrict our investigations to 
1-D maps. Nevertheless, our ideas can be applied 
to 5-D maps (5 = 2, 3, 4 ,. . .)  and sets of differential 
equations as well. The paper is organized as follows: 
In Sect. 2 we give a review of the definition of the 
transinformation 7t for dynamical systems. After 
this we introduce a quantity Ii (/) which is related to 
the LCE, and which gives the uncertainty on a 
future state, if an initial state is known (/= 0 , 1 ,2 ,... 
labels the prediction period). /?(/) is defined with­
out partitioning state space, hence h{l) characterizes 
the system itself. In order to illustrate our ideas, we 
investigate the so-called “A/-map” in Section 3. 
Uncertainty H C{1) on a future state of a symbolic 
system may also arise from overlappings of mapped 
boxes (i.e., divisional points of the partition of state 
space are not mapped on divisional points). Hence a 
relation between /?(/) defined in Sect. 2 and 7/c(/) is 
of interest. In Sect. 4 we take this fact into account 
and give lower and upper bounds of H c(l) which 
are related to /?(/). Moreover, the effect of over­
lappings is investigated in the limit of an infinitely 
fine partition. As an illustration some results for the 
well-known logistic equation (a = 4: fully developed 
chaos) are presented. Section 5 is devoted to an 
elementary investigation of the effect of external 
noise on the uncertainty production of the dynami­
cal system. In the appendix we present results for 
several families of piecewise linear 1-D maps in 
order to give further illustrations of our main ideas.

2. Uncertainty Production of 1-D Maps z„+ \

In order to explain our motivation for the defini­
tion of a new quantity /?(/) describing the un­
certainty on a future state, reached I iterations in the 
future, under the condition that the initial state is 
known, we start with a review of the definition of 
the transinformation 7, for dynamical systems.

2.1. Transinformation

As already mentioned above, the definition of 7t 
requires a partition

•'*:= [ B ^ x ,  Bv n B M =  0 if v +  //,

of the domain containing the orbit of the system. 
This domain is assumed to be bounded. Con­

sequently, :jJj consists of a finite number, say M, of 
bounded boxes. Throughout this paper we only 
consider so-called e-partitions. An e-partition of 
the interval [0. 1 [ we define as follows:

■%?:■= \ B ^ =  1, Bm := [ ( / / -  1) e,fi e[.
H =  1 ,2....... A / ,

where M =  1/e is a positive integer. Thus, each box 
of an e-partition is assumed to be of equal size. (For 
shortness we sometimes say “partition” instead of 
“e-partition".) From a physical point of view the 
partition may be induced by a (digital) measuring 
apparatus with a finite precision 1/e  of measure­
ment and a certain gauging corresponding to the 
position of the partition. The measuring apparatus 
allows us to determine the box Bß(n) containing the 
orbit {z„}£?o of the system at every time step«. 
Hence the boxes can be characterized as states of 
the system.

Now, let p M(n) label the probability that the orbit 
visits the box Bß at time n. Thus a measurement at 
time n provides the (average) information

M
H{n) =  £  pß (n) Id \ / pM(n), (Id =  log2), ( 1 1 )

n=\
using the well-known formula by Shannon. In the 
following we distinguish between the expressions 
“information” and “uncertainty” : We say that we 
have the information 7 / (n) about the state B^{n) of 
the system, if we have determined it as a result of a 
single measurement at time n. On the other hand, if 
no measurement was carried out, we say that 77 (n) 
gives the uncertainty about the state Bß(n).

Let us assume now that we have measured B^{no) 
at the initial time n0. Thus we have obtained the 
information 77 («0)- An interesting question is now 
whether 7 /(n0) contains information about the
future state 7?/((„0+i), /=  0, 1.2....... In order to give
an answer to this essential question, we introduce 
the joint probabilities p v̂ (n0, 1) that the orbit is 
found in Bfl at time « 0 and I time steps later in Bv,
v, p  = 1,2....... M\  / = 0, 1, 2.........  Hence the joint
uncertainty H ( n 0, l )  of a certain combination 
(B^n0). ^ („0+1)) is given by

M
H(n 0J )  =  X  p VfJ(n0. l ) \d  \ / p vfi(n0J ) .

v- /I =  1

Of course. H ( n 0J ) also gives the information 
obtainable in two measurements at times n0 and 
«0 + I- If we have only the information H {no) from
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one measurement at time «0, there will remain the 
uncertainty

H c( " o J ) - = H ( n 0, l ) - H ( n 0) (2.1)

about the future state 5 /i(„0+/). Now we introduce 
the conditional probabilities

. . .  I PVM(n0, l)/Pfj(n o) if o) 4s 0
o.henvise,

v, n = 1, 2 , . . . ,  M

which gives the probabilities for the transitions 
from Bn at time n0 to Bv at time n0 +  l. The 
uncertainty H c(n0, l )  defined in (2.1) can now be 
written as follows:

M
H c(n0, l ) =  X P»(no)H c(n0, l,/x) (2.2)

M= 1
with M
H c(n0,1, pi) := X Pv/M(n o, I) Id \ / p v/ft(n0 I). (3.1)

V— 1

From well-known relations of information theory 
(see e.g. [8]) we know that

H c(n0J )  ^  H ( n 0 +  I), (4)

i.e., the uncertainty about the future state Bß(no+l) 
can only be decreased by a measurement at time n0. 
The equality in (4) holds if the states BM(„o) and 
B/l{„0+1) are statistically independent ( p v/h(n0,1) 
= p v(n0 +  /)). Hc(n0, I) is called the conditional un­
certainty on a future state Bß(no+[) under the condition 
that an initial state BM(„0) is known. Shaw [1] refers 
to this quantity as “information production”, i.e. 
H c(n0,1) gives the “new” information (in addition to 
the “old” information 77 («0)) which is obtainable in a 
second measurement at time n0 + /. From our point 
of view H c{n0, l )  should be called “uncertainty 
production” because it gives the uncertainty on the 
future state Bm{„0+/) which remains, if only the 
initial state was measured. From (4) follows that

I t (n0J ) : = H ( n 0 + l ) - H c(n0J )  (5 . 1)

is always nonnegative. It(n0,1) is called “transinfor­
m ation” because it gives the information on the 
future state BM{no+/) which is obtained from a 
measurement of the initial state Bm{„o). W ith other 
words: It (n0,1) gives the decrease of the uncertainty 
on the future state by measuring the initial one. 
I t (n0, l )  equals zero if these states are statistically 
independent, i.e. if state predictions are completely

impossible. Otherwise it is positive and reaches its 
maximal value H ( n 0 +  l) if there remains no un­
certainty about BM(„0+i) due to the measurement of
Bß(n0) ■

Now we reverse the question for the possibility of 
state prediction and ask for the information about a 
former state B^(no) under the condition that a present 
state („„+/) is known, i.e., we now ask whether a 
dynamical system is able to remember its previous 
state. Obviously the uncertainty about a former state 
Bn(n0)’ under the condition that a present state 
Bfi(no+t) was measured, is given, in analogy to
(2 . 1), by

H c(n0, - l )  : = H ( n 0, l ) - H ( n 0 +  l).

Hence, in analogy to (5.1),

It (n0, - l )  := H {n 0) -  H c(n0, - l )

gives the transformation on the former state Bß(„o), 
if the present state B^{no+i) is known. A simple 
analysis proves that It {n0, — I) equals / t («o» 0- Con­
sequently, It (n0J )  can be interpreted formally in 
the same way as 7t («0 ,~ 0 -  More specifically, we 
say that the system has “forgotten” its initial state 
BU(n0) after / time steps, if 71(«0, /) equals zero.

So far we have considered processes which are 
not of necessity stationary. Nevertheless, in the 
following we consider only stationary processes. 
Hence all quantities defined above are now assumed 
to be independent of the initial time n0 which is 
equalized to zero. With other words: Transients are 
supposed to have died out such that the orbit of the 
(dissipative) system has reached an attractor A, 
which is assumed to be bounded. We further 
assume to have an ergodic invariant (“natural”) 
measure ß  (which is defined on a suitable cr-algebra 
of subsets of A) such that

f i ( B , ) = Pu, p =  \ , 2 , M ,  (6 )

gives the probability that an orbit visits the box Bß 
at any time n. In the following we say “almost 
everywhere” and “almost every” with respect to fi. 
Moreover, fi is assumed to be defined by an 
invariant density @(z) (for more details of the 
definition of a “natural” or “physical” measure see
e.g. [9]). Let f ~ ' ( B v) label the set which is mapped 
on Bv, if the 1-D map acts / times on it:

f - ' ( B , ) : = { z e A \ f ' ( z ) e B , } ,  v= 1, 2 , M.

1.2. 3 , . . . , / ° s  l).
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H ence

Pwu(l),  v ,ßi=  1,2, . . . , M  (7)

is the probability for the transition BM -> Bv after 
/ time steps. Because of the stationary situation we 
have H ( n 0 +  I) =  H (n0) =  H { (i refers to “initial”). 
The transformation defined in (5.1) can now be 
written as follows:

with
M

H\ = Z Pu ld 1 /Pu,

M
= Z P»Hc(l ,M),  and

Ai-l

= Z Pv/M(0 ld 1 /Pv /fi ( I )■

(5.2)

(1.2) 

(2.3) 

(3.2)

Shaw [1] argues that the uncertainty H c(l) on a 
future state is given for simple cases by / • LCE. 
Especially, he argues that the system has forgotten 
the initial state (and thus state predictions have 
become impossible), if / • LCE equals approximate­
ly H j, i.e., if the produced new information (un­
certainty) has “pushed away” the initial information. 
In the following we present a refinement of the 
argumentation of Shaw for simple 1 -D maps.

absolute value of the slope in the box BM. In general, 
divisional points o f the partition are not mapped on 
divisional points by f. Thus, overlappings of mapped 
boxes have to be taken into account. As will be seen 
later (Sect. 4), overlappings increase the uncertainty 
on a future state. In order to obtain a lower bound 
of / / c (/), we neglect the overlappings at this stage.

Now consider a box BM with a slope su greater 
than one. Thus, sM gives the approximate number of 
transition probabilities p Vi/ß {\) ,  /'=  1, 2 , . . . ,  in t(^ ) , 
which equal approximately 1/ ^ ,  and the rest of 
them equal zero. Consequently, a lower bound of 
H c ( \ , f i )  is given by

int(5„)

Z  P„,„ (1) Id 1 /p„,„ ( I ) *  Id j„ (cf. (3.2)).
1=1

On the other hand, if /  contracts the box BM (i.e., 
sM ^  1), one of the transition probabilities equals 
one, while the rest of them equals zero. Consequent­
ly, H c ( 1,//) equals zero in this case, i.e., there is no 
uncertainty produced on the future state. A con­
tracted box Bß is not resolvable by the measuring 
apparatus, assuming a fixed finite measuring preci­
sion, but the information on the position of f ( B M) is 
still known due to the knowledge of the position of 
Bm and the deterministic action of /  on BM (see 
Figure 1). Thus we are motivated to define the 
average uncertainty h{ 1) on a future state after one 
time step as follows:

2.2. Uncertainty Production and Lyapunov 
Characteristic Exponent

Now we give a heuristic argumentation for a sub­
stitution of the uncertainty production H c(l) by a 
new quantity /?(/) which will be defined independent 
of a partition of state space. However, we start with 
an £-partition such that the slope d f / d z  and the 
invariant density q are nearly constant in most 
boxes. For a piecewise C 2-function /  and a piece- 
wise C '-function q this will be attained if e d 2f / d z 2,

1 and e d q / d z  1 almost everywhere in [0 . 1], 
respectively, i.e., the e-partition has to be fine 
enough. Moreover, if these assumptions do not hold 
in a few boxes, the error we make is expected to be 
small, if these “exceptional” boxes have a small 
measure fi such that they do not essentially con­
tribute to the uncertainty production. In the follow­
ing sM := d f /d z  \zs B , >u =  1, 2 , —  M , labels the

with

Br

/i ( 1) := j 0 ( \ d f / d z  \ -  1) ld \ d f / d z  \ q ( z )  dz
-oo

= j & { ' d f / d z  -  1) ld \ d f / d z  d/7, (8 .1)

0 { z )  =
0 ,

z >  0 

otherwise.

f(Br )

Fig. 1. Schematic representation o f a contracting action o f  
the map /  without overlappings, i.e. f(B^) contains no 
divisional point o f the e-partition.
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Fig. 2. Schematic illustration o f a contracting action o f the 
second iterate o f /  The uncertainty produced by the first 
expanding action o f / i s  vanishing in the second step.

Here the sum over // (cf. (2.3)) is replaced by an 
integral in order to obtain an average over all 
possible initial states. Note that the integral in (8.1) 
is taken over that part where the absolute value of 
the slope of /  is greater than one, because un­
certainty on a future state is produced only in 
expanded intervals. If /  acts expanding almost 
everywhere on s u p p g (z )= ^ ,  (8 .1) reduces to the 
well-known formula for the LCE:

/. := |  Id jd //d z j dfi.  (9.1)

Thus, in general we obtain

h ( \ ) <  H c( \ ) .

a is a lower bound of the uncertainty on a future 
state Bß(i).

Now we investigate a lower bound h( 2) of the 
uncertainty H c(2) on a future state Bß(2>, if an 
initial state ß^(0) is known. Let Bß be a box which is 
expanded by the action of /  (first iteration: >  1), 
as illustrated in Figure 2. Thus the uncertainty Id 
is produced in the first step. Now it may happen 
that /  contracts f ( B M) such that in total / 2 has a 
contracting action on Bß, i.e., d / 2/dz ^  1 for 
z  e Bm. In this case after the second iteration no 
uncertainty is produced with reference to the initial 
state. The uncertainty produced by the first expand­
ing action of /m a y  vanish in the second step. Note 
the difference to the statement above regarding the 
uncertainty production after one time step: Con­
traction cannot effect a reduction of uncertainty 
which is simultaneously produced in expanded 
regions, but contraction can reduce uncertainty 
which arose from the expansion in a former time 
step. On the other hand, if / 2 has an expanding

action on BM, uncertainty is produced after two 
iterations. Thus, the expanding or contracting 
character of the action of f 2 determines whether 
uncertainty on the future state Bß(2) is produced or 
not. These considerations can be extended to 
include prediction periods I >  2. Consequently we 
are inclined to define

/?(/) := J <9( d / '/ d z j  -  1) Id d / '/d z j  d ß ,  ( 10.1)

which is expected to be a lower bound of the 
uncertainty H c(l) (see (2.3)) if the assumptions 
given above hold for f 1.

We have assumed ergodicity, hence X can be 
determined operationally from a very (exactly: 
infinitely) long time series {z„ = / ”(-o)!>T=o:

m -  1
a =  lim Mm X  Id \ d f / d z \ Zn\

W- + 00 „ = 0

= lim 1/m ld \ d f m/ d z \ Zo\, (9.2)
m-» + oo

for almost every z0 e A.
In analogy, /?(/) can be obtained operationally 

too:
j m- 1

/ ,( / )=  lim -  X  < 9 ( |d / ' / d z j J -  1)
m-* + oO m n = Q

• l d | d / ' / d r U .  (10 .2 )

it follows from the chain rule applied to d f ' / d z  that 
( 10. 1) can be transformed as follows:

/?(/) =  /• A +  0(1), (10.3)

with

0(1) := j 0 ( 1  — \ d f l/d z \ )  Id \ / \ d f l/ d z \  d ß .  ( 11)

0(1) is a correction term for the formula proposed 
by Shaw [1] and fulfils the relation 0(1) ^  0. The 
equality holds if f l has an expanding action 
( d f ' / d z \  ^  1) almost everywhere in A. Thus we 
have, in general, the relations

/• l ^ h ( l ) <  H c(l), 1=  1 ,2 ,3 , . . . .  (12)

Due to the supposed ergodic chaotic dynamics 
almost every orbit which starts on the attractor A 
generates a “typical” orbit such that the limit a of
(9 .2 ) is independent of almost every initial value z0. 
Consequently, the sequence of functions in z0

{ l / m l d |d / " V d z U } 2 ,2 ,  (13 )
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is pointwise convergent for almost every zo e A. The 
pointwise limit function is given by a =  constant >  0 . 
If we even assume a uniform convergence of the 
sequence (13) almost everywhere in A, there is a 
least positive integer /* which is independent of z 0 
and which guarantees that for I >  I* the slope 
d / ' / d .-1 is greater than one for almost every z0 e A. 

Hence, from (11) follows

0(1) =  0 for / > / * ,

and (10.3) reduces to that one proposed by Shaw 
[1]:

/?(/) = /• A for / > / * .

Nevertheless, in general the correction term 0(1) is 
of importance, especially for small values of the 
prediction period / ( / ^  H in i t ia l<  I*)- In the follow­
ing (Sect. 3 and the appendix) we present some 
examples in order to illustrate these statements.

3. An Example: The So-Called “M-Map”

In order to illustrate our idea of uncertainty 
production presented above, we define a piecewise 
linear 1-D m a p ( c a l l e d  “M -map”) as follows:

I m , * ( " ) <

z /a .

-  a z/( 1 /2  — a) + 1 + a 2/ ( l / 2  — a), 
a ^  z <  1/2

a z / ( l / 2  — a) + 1 — a ( l  — oc)/(l/2 - a ) ,  
1 /2  ^  z <  1 -  a

— z /a  +  1/a , 1 - a ^ z ^ l

for 0 <  a <  1/ 2 .

Figure 3 shows the graph of fMr  including that of 
its twofold iterate (dashed line) for a = 1/6. If 
the control parameter a approaches 1/ 2 , the well- 
known symmetric tent map appears. The probability 
density

( 1 / (2  -  2 a), 0 ^  z <  1 -  a,

Qm. * 0 )  '•= |  1 / ( 2  a), 1 -  a =§ z =i 1,

{ 0 , otherwise,

fulfils the Frobenius-Perron equation

Q m. i (-) ^  Qm, a (^z)/1 df m, a / d z | -41 ,
/'

where the sum is taken over all z, which are 
mapped on z by f M, a. Hence defines an

invariant measure  ̂ which is assumed to be 
ergodic. Note that the probability to find an orbit in 
the “small” interval [1 — a, 1] is the same (namely 
1/ 2 ) as to find it in the “great” interval [0 , 1 -  a]. 
This is due to the special action of the map: in the 
first iteration the interval [a -  a 2, 1 — (a -  a 2)] is 
condensed to [1 -  a, 1] and then, in the second 
iteration, spread over the entire interval [0 , 1].

The LCE is easily obtained from (9.1) using the 
invariant measure fiM gi:

1
Id ( 1 /2  — a)(1/2_3!) a a.

For 0 < a <  1/2 the LCE ).M x is always positive. 
Hence every system of the family [/M,a)'»e]o.i/2[ is 
a chaotic one. The uncertainty on a future state can 
be obtained from (8 . 1):

1/4 < a<  1/2,

V i (  1) =  ̂ ]A ”
2 a -  2

0 <  a 1/4.

If/w .a is expanding in [0 , 1] (i.e., a e ] 1/4, l / 2 [), the 
uncertainty after one iteration is given by the LCE. 
On the other hand, for a e ]0, 1/4[/m , * has a con­
tracting effect in ]a, 1 -  a[, and the uncertainty 
production hM a ( 1) is greater than /.M a :

^M. i ( 0  ~  S'M. * =  <V t (1)

0 1/4  s  a < 1/ 2 ,

0 <  a <  1 / 4 .
1/ 2 - a  1/ 2 - a  

-----------I d ------------
-  a

0
Fig. 3. 
second

*  1/2 1- *

Graph o f the M-map f M 1/6 includ 
iterate f f a U6.

ng that o f its
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K

/ / itera tion

.3 .4 .5

Fig. 5. Transinformation 7,;M U({(1) =  H{ -  Hc.M U6(l) of  
the M -m ap versus prediction period / using the e-partition 
.^i/36 (points). The dashed line represents H, -  I ■ U6, 

i/6 =  115..., and the solid line H{-  hM uAl). Obviöus- 
ly "m  i/6 (0  describes the uncertainty production more 
properly than / • am l/6 .

Fig. 4. Uncertainty h M a (l) on a future state o f the AZ-map 
f M x , if  an initial state is known, as a function o f  the 
control parameter a. Parameter: prediction period / 
( = 1, 2).

If a approaches zero, <V a(l)  goes to infinity, while 
am, a remains finite (am,» 1 /2  if a -+ 0 ), as illus­
trated in Figure 4. Thus the correction term <5^,2 (1) 
becomes the more im portant the more a deviates 
from 1/4 and approaches zero. This is a typical 
behaviour also for the maps considered in the 
appendix and will be discussed there in more detail. 
For / ^  2 / m a (0 <  a <  1/2) is expanding in [0, 1]. 
Thus we obtain for the uncertainty production

hM, at (0  = I ' A-m, a , / = 2, 3, 4, ... .

Now we consider special £-partitions e =  z / i  
with i =  1, 2, 3 , . . . ,  of the interval [0, 1], and special 
maps / m,*, y. =  \ / ( 2 k  +  2 ) with k =  1 ,2 ,3 , . . . .  
Thus, is a Markov partition with respect to 
i-e-, /a/,« is monotonous in every box BM of the 
partition, and f M,* maps the set {fi ■ of
divisional points of onto itself. In this case the 
initial information H i M, i  is immediately obtained 
from (6 ) and ( 1.2 ) using the invariant measure

H i ,  m , i  = Id 1 /e +  1 /2  Id 4 a (1 -  a ) .

The uncertainty H c M, =<(1) on a future state B^(1) is 
easily obtained from (7) and (2.3):

Id a
H c, m, a (l)  = 2a  -  2

Hc\ w, a ( 1) is in perfect correspondence with the 
uncertainty hM, * 0 )  (see (14)) which was calculated 
from (8.1). This is due to the special choice of the 
partition of state space which eleminates the effect 
of overlappings, and which guarantees that the 
slope off M,a is constant in every box of the partition. 
As mentioned above, we would, in general, expect 
that hM *(1) is a lower bound of H c-M,a(l)  (see 
( 12)).

As illustrated in Fig. 3, becomes more com­
plicated in shape as / increases. Thus, for a fixed 
parition there will be a positive integer /o such 
that 28e is no Markov partition with respect to if 
/ ^  /0. Either there occur overlappings, or is not 
monotonous in each box, or both. In these cases the 
uncertainty hM,*(l) cannot be related to H c M, A 0  
any longer. This statement is illustrated in Figure 5. 
.^>1/36 is a Markov partition with respect to /a/,i/6 > 
/=  1, 2 , and the slope d /^ i / 6/d z  is constant in every 
box Bm, h =  1, 2 , . . . ,  36. Hence, the uncertainty 
H c,m, i/6(0  equals hM, i/6(0- For / ^  3 overlappings 
occur and the slope of / 4 i/6 varies within some 
boxes. As a result we obtain Hc M, i/6(0 <  hM, i/6(0,
i.e., for 3 hM, i/6(0 cannot be related to 
Hc:M, i/6( 0  any longer.

4. Uncertainty Production Due to Overlappings

In Sect. 2 we discussed the uncertainty production 
of 1-D maps neglecting the fact that uncertainty
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Fig. 6 . Schematic representation of a contracting action 
of f. Due to an overlapping 1 bit uncertainty arises in this 
case.

may also arise, if divisional points of a partition of 
state space are not mapped on divisional points, i.e., 
if overlappings of mapped boxes of the partition 
occur. Figure 6 shows this situation for sß <  1, i.e., 
if /  contracts the box BM. Due to an overlapping
1 bit uncertainty may arise in this case. (Note the 
difference to the case of no overlappings where the 
contracting action of /  does not contribute to the 
uncertainty production.) An investigation of the 
effect of overlappings appears appropriate because 
overlappings do occur in experimental measure­
ments, at least in general.

We start our investigations with piecewise linear 
maps /  ( / :  [0 , 1] -> [0 , 1]) assuming that there is a 
unique invariant density q  (which is a piecewise 
constant function in this case) such that we have a 
finite set {z,}£! \ of so-called “points of discontinu­
ity”. We consider z, to be a point of discontinuity if 
at least one of the following conditions holds: 
(i) /  is discontinuous at z,, (ii) q  is discontinuous 
at z,-, (iii) d //d z  does not exist at z,-. (E.g., the 
M -map considered in Sect. 3 has the following 
points of discontinuity: 0 , a, 1/ 2 , 1 -  a, 1, and the 
map / i >a considered in the appendix has: 0 , a,
1 -  a, 1.) A box Bß of the e-partition of [0, 1[ is 
called “box of discontinuity”, if Bß contains at least

one point of discontinuity. Otherwise Bp is called 
“box of continuity”. Now we introduce a (finite) 
decomposition {/,•}*=] of [0 , 1[ which unities adjoin­
ing boxes of equal type such that each interval of 
the decomposition is either a (finite) union of 
adjoining boxes of continuity (in this case Ij is 
called “interval of continuity”), or a (finite) union 
of adjoining boxes of discontinuity (then Ij is called 
“interval of discontinuity”). The intervals of con­
tinuity are assumed to be as large as possible such 
that they adjoin only one interval of discontinuity. 
Moreover, if / y is an interval of discontinuity, and 
only the left boundary of Ij is a point of dis­
continuity, then Ij can be considered in the follow­
ing as an interval of continuity. More specifically, if 
all points of discontinuity coincide with divisional 
points of the e-partition, we say that we have no 
interval of discontinuity. If the e-partition is fine 
enough, the intervals of continuity typically contain 
a large number of boxes, and the intervals of dis­
continuity typically consist of only one box. 
(Obviously the number of intervals of continuity 
cannot exceed k*.) In the following, we restrict our 
attention to intervals of continuity because these 
intervals typically give the dominant contribution to 
the uncertainty production, if the e-partition is fine 
enough, and if the prediction period / is small 
enough. We now will derive formulas for an effec­
tive calculation of the uncertainty production after 
one time step (/ = 1). Thereby we will learn about the 
influence of overlappings on the uncertainty pro­
duction.

Let Mj label the number of (adjoining) boxes in 
the interval /  of continuity, and sj =  |d / / d z |z6/j.|. 
The situation is shown in Fig. 7 a and b for an 
expanding (sj ^  1) and a contracting ( O c s y c l )  
action off  respectively. From a somewhat extensive 
but simple calculation we obtain from (7) and (3.2) 
the uncertainty production in If.

Case a) (s; ^  1):

\ [ M>-\
H i "  “ » ( 1) =  Id SJ +  — -  I  Id 1 / < $ ?  +  ( 1  -  g f f P) Id I / ( 1  -  q f f " ) ]

S j M j  I  /=  |

+ (Aj/e) Id e/Aj +  q'W Id Uqff i  ,

with
qf?p := U ' Sj -  Aj/ e) — int (/ • Sj -  Aj/e) , (15)
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Case b) (0 <  Sj <  1):

1 Ni£  [(?™ ld | /% r  + ( , _ , « . )  |d 1/(1 _  ,,»„)] ,
M j  i=  0

809

with

A i +  i • £ i .con _J_------------------ j n t  I

s.- ■ e

A j  +  i ■ e \  I  s r  M t  - e  —  A ,
Nj := in t ' —---------------z (16)

J y- labels the shift, as illustrated in Figure 7. It 
fulfils 0 ^  Aj <  e . (If Mj equals 1, the sum over i in 
(15) is equalized to zero. Moreover, if sj Mj e  <  Aj 
(i.e., N j = - 1), we set //£•con(1) =  0.) / / c7”exp(l) -  ld s, 
and / / c' ' con(l) give the additional uncertainty 
production due to overlapping in the expanding and 
contracting case, respectively. The average uncer­
tainty production is now obtained from 

k
H c( \ ) = L ß { I j ) H IA \ ) .  (17)

j  = i

In (17) the average over the uncertainty production 
in all intervalls of the decomposition is taken. 
(//'>( l) = / / ĉ con(l), if Sj =  1, and H[>( 1) = 
//A-con(j), if 0 <  Sj <  1.) If Ij is an interval of dis­
continuity, / /£ ( ! )  has to be obtained directly from
(7) and (3.2). For a sufficiently fine £-partition the 
intervals of discontinuity are expected to be of 
relatively small measure fi such that they do not 
essentially contribute to the average uncertainty 
production H c( 1). Hence a “good” estimation of 
H c( 1) is expected to be obtained, if the average in
(17) is taken only over the intervals of continuity.

Now we are looking for some estimations of 
j-jjj'exp( 1) id Sj and / / ' - “ "(I). If we use the 
relations

0 ^  q ld 1 / q  + ( 1 -  q) ld 1/(1 — q) =  1

0 ^  q ld \ / q  ^  1 / (e ln 2) == 0.5307 . . . ,  

which hold for every q g [0 , 1], we obtain

0  =i H q ' exp ( 1) — ld Sj

2

and

1 +
1

Mj \ e  ln 2
1.0614..

and

,  Nj  + 1
0  =  H q' con ( 1) =  ~~

j

1 — Aj / s  
Sj -\ -— ^  Sj + 1 /M j.
J Mj J 1

U-

(18)

(19)

b)

Fig. 7. Schematic representation of an expanding (Fig. 7 a) 
and a contracting (Fig. 7 b) action o f /  on an interval Ij o f  
continuity.

The upper bounds in (18) and (19) often give useful 
estimations of the maximum additional uncertainty 
production due to overlappings. Nevertheless, some­
times they exceed 1 bit, though from (15) and (16) 
follows that the additional uncertainty production 
due to overlappings cannot exceed 1 bit. The lower 
bounds in (18) and (19) are reached, if the shift 
equals zero, and if the slope s7 in case a) (s7 ^  1) and 
1/s, in caseb) (0 < sy < 1) are (positive) integers. 
Under these assumptions no overlappings occur in
I,. This situation was already discussed in Section 2.
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There we defined /2( 1) (see (8.1)), which equals exact­
ly H c( 1), if the assumptions given above hold for 
every interval of continuity, and if there is no 
internal of discontinuity. From this consideration it 
becomes evident that there are two different reasons 
for the occurrence of overlappings which cause an 
additional uncertainty production: firstly, the shift 
Aj may differ from zero, and secondly the slope Sj 
(in expanding) and IA, (in contracting regions) may 
be no integer.

Now we assume that Sj (in case a)) and 1 /sj (in 
case b)) are integers, but the shift Aj does not of 
necessity equal zero (0 ^  Aj <  e). In this case (15) 
and (16) can be written as follows:

H p exP(l) -  Id Sj 

= — [(Aj/e) Id e/zJy + (1 - A j / e ) Id 1/(1 —Aj/e)\  ^  — ,
Si Si

and

N , +  1
Hi"c”  (1) =  [q, Id 1 fqj +  (1 -  qj) Id 1 / ( 1 -  ,,)]

with
Aj . / Aj 

<7/ := mt — J-S: ■ E \ Sj ■ E

In the following we assume that the shift Aj is 
vanishing, and Sj • Mj (= Nj) is assumed to be an 
(positive) integer. Hence just Nj  boxes of the e-par- 
tition are covered by / ( / , ) .  At first we consider the 
case of an expanding action of /  (Sj ^  1). The slope 
Sj can now be written as follows:

Sj =  int (Nj /Mj)  + rij/rrij ,

rtj and nij (rij <  mj) being assumed to be prime to 
each other. A simple calculation reveals that 
H p ' exp(1) in (15) can now be written as follows:

H p ' ^ { \ ) - \ d Sj = ------ X  —  l d - ^ .  (20)
sj  mj , nij i

The sum in (20) can be estimated as follows:

2 v-,' i m, ‘ l
----  X  — Id —  < 2 J q Id l /q dq  =  — —  .
mj i= | ni/ i o 2 ln 2

Hence we have a new upper bound for H p e*p( 1) —

(2 1 )

Id Sj:

Hp -exp( 1) — Id Sj <  — 1 °-7213---

i.e., in this case due to overlappings less than 
1/(5) 2 ln 2) bit uncertainty is produced in addition 
to \dSj.  In the same way an analogous result is 
obtained in the case of a contracting action o ff.  The 
inverse of the slope can then be written as follows:

\/Sj = int ( Mj / N j )  +  m j / n j ,

nij and rij (nij <  nj) being relatively prime. For 
7/c',con(l) in (16) we now obtain

) =  2£ l £;
Hj ,=o nj i 2 ln 2

(2 2 )

The greater ntj in case a) and n in case b), the more 
H p ' exp (1) Id Sj and H p 'con( 1) approach their 
respective upper bounds.

If the shift Aj is not vanishing, the additional 
uncertainty production due to overlappings can be 
greater than the upper bounds in (21 ) and (2 2 ). 
However, if wy and ry are large compared to 1, 
\/(Sj 2 ln 2) and 5,7(2 ln 2) give good approximations 
for Hp exp(\)  -  Id Sj and H p 'mn( 1), respectively, 
also for Aj +  0 .

So far we have only considered the prediction 
period /=  1. It should be noted that similar con­
siderations can be made also for f 1.1 =  2, 3, 4 , . . . ,  in 
order to obtain the additional uncertainty produc­
tion due to overlappings after / time steps. The 
decomposition of [0 , 1[ into intervals of continuity 
and discontinuity varies, in general, for different 
values of / -  typically the number of points of 
discontinuity grows, if the prediction period / 
increases till there are intervals of discontinuity 
only. However, if / is sufficiently small such that the 
uncertainty production in intervals of continuity 
predominates, we have the following estimation:

(23)

Sj 2 ln 2

Up to now piecewise linear maps have been 
considered. In the following we use the results 
derived above for a somewhat heuristic investiga­
tion of the additional uncertainty production due to 
overlappings in 1-D maps which are not piecewise 
linear. Let f l be “essentially nonlinear” which 
means that f ‘ has no linear piece (i.e., d 2f ‘/ d z 2 4  0 
almost everywhere in [0, 1]). We assume to have a 
fine enough £-parition such that the contributions of 
intervals of discontinuity to the uncertainty produc­
tion can be neglected, and [0 , 1[ can be nearly 
completely composed of a very (infinitely) large
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number of intervals of continuity where f 1 is nearly 
linear. If the slope s 1 =  d /V d z  varies continuously 
from one interval to the other, the majority of these 
intervals will be characterized by large values of ra, 
and r\j (cf. (20) and (22)). Consequently, \ / ( s l 2 In 2) 
and s ' / (2 In 2) give good approximations of the 
additional uncertainty production due to overlap­
pings in expanding and contracting regions, respec­
tively. Hence we expect in the limit e -*■ 0:

H c(l) __„ Hc(l),  with
£-* 0

H c( l ) : = h ( l )  +
1

2 In 2

+  <9

J©

d f
d r

d f d/ '
d z

-l

-  1
d f
dz

dfi. (24)

Obviously Hc(l) fulfils the inequality:

h ( l ) * H e( l ) * h ( l ) + - l 1— .
2 In 2

To demonstrate the validity of our estimation, we 
now present some results for the well-known logistic 
map (see e.g. [10])

A , a00 = az  (1 — z), 0 ^  z ^  1, 0 ^  a ^  4.

For a = 4 an ergodic invariant measure /7l ,4 is 
known which is derived from the invariant density

Ql a (z) -

0 <  z <  1

0 , otherwise.

Consequently, the LCE Al,4 is readily obtained 
from (9.1): Al.4 = +  1 bit- The uncertainty produc­
tion /jl .4( 1) is greater than /.L 4 because A .4 has a 
contracting action for z e ] 3/8, 5/8 [. From (8.1) we 
obtain /jl, 4 (1) = (1.23042 ±  0.00002) bit. The un­
certainty production including overlappings in the 
limit e —► 0 is estimated using (24): H c- l , 4 ( 1) 
= (1.52564 ±  0.00002) bit. In order to test these 
results, we have calculated H c l , 4 ( 0  via (6 ), (7),
(3.2), and (2.3), using the invariant ergodic measure 
/7l ,4 , for different e-partitions ( l / e =  5 -2 1, 5-22, . . . ,
5 • 2 15). An illustration is given in Figure 8 . Obvious­
ly we obtain the expected behaviour: the uncertainty 
#c;L ,4 ( 0  approaches / / c;l , 4 ( 1) if the precision 1/e 
of measurement is increased. /?l,4 ( 1) and /jl ,4 0 ) 
are defined in [11], They give an estimated upper

1.8

1.6
£

1.4
-j'

3-°
1.2

1.0

hLi(1)

-hL/1)
■hLid)

13 15

-Id Si

Fig. 8 . Logistic equation f L A\ Uncertainty / / c;L,4 ( 1) about 
a future state if  an initial state Bß(0) is known, as a
function o f the precision 1/e o f measurement (points).
Obviously, äl .4 ( 1) describes the uncertainty production 
more properly than /.L 4 . A, 4 ( l )  and hL 4 ( 1) are estimated 
lower and upper bounds o i H c. L 4 ( 1) (see [11]) which take 
into account the effect o f overlappings. H c. i 4 ( 1) is the 
estimated uncertainty production which should approach 
H r., , (1)  as 1/e -*■ +oo.

and lower bound of H c- l , 4 ( 1) which are expected to 
be valid even for relatively small precisions 1/e  of 
measurement. / ? l , 4 ( 1 )  and ^ l , 4 ( 1 )  were derived 
from the assumption that for every box of the 
partition the most unfavourable and favourable case 
of overlapping occurs, respectively, whereas, in 
contrast to the explanation above, no use was made 
of the fact that possibly not for all boxes the most 
unfavourable respectively favourable case is realized 
at the same time.

5. The Influence of External Noise 
on the Possibility of State Prediction

In this section we present some elementary inves­
tigations of the effect of additive external noise on 
the uncertainty production after one time step 
( /=  1). We assume that the noise is given by a time 
discrete stationary stochastic process such
that every random variable « = 1 ,2 ,3 , . . . ,  is 
independent of the former <̂m, m = 0 , 1, 2 , . . . , « — 1, 
and all random variables are assumed to be 
uniformly distributed over the interval [—1, 1], In 
the following the noise power is given by a. A 
realization of the stochastic process is multiplied by 
a and then added to the right side of the 1-D map /  
which maps the interval [0 , 1] onto itself:

z„+1= / ( z n) + CT-£„ (mod 1) = A ( Z „ ) .  (25)

The (mod ^-transform ation guarantees that the 
orbit remains in [0 , 1[.
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In general the stationary probability density q a, 
defining the stationary measure fia, differs from the 
invariant density q belonging to the deterministic 
map f. g a is expected to be typically “more smooth” 
than q (see e.g. [12]). In the following we presume 
e-partitions which are fine enough such that the 
slope df/dz  and the invariant density q are nearly 
constant in most boxes BM, /u =  1 , 2 , . . . ,  M, of the 
partition.

Now we decompose the stochastic action of f a on 
the box Bm in two steps: In the first step Bß is 
mapped deterministically by / on an interval [a ,̂ bM[ 
—f ( B M)- Under the assumptions given above this 
first step is equivalent to mapping an ensemble of 
points, which are approximately uniformly dis­
tributed over Bm, on [a^, bM[. Because the slope 
d //d z  is assumed to be nearly constant in BM, the 
points of the ensemble will be nearly uniformly 
distributed over [afl, bß [ after the action o f/ as well. 
In the second step we add the random variable a • £i 
which is uniformly distributed over [— a, a]. In 
order to obtain the resulting transition probability 
density dM (z), we now have to distinguish between 
two cases:

(i) (2a <  bM- a „ )

du, (i) (“)

z - a M + a  
(bM -  aM) 2 a  '

bM +  o

au — a ^  z <  a„ + er.

•, bß - a ^ z ^ b ,  +  a,  
(bu -  a„) 2 a

0 ,

(ii) (2o =  bn a )̂

z -  a„ +  a

dß. (ii) ( - )  —

(bM ~ a ^ ) 2 o  

1

2(7

otherwise;

, ap — a ^  z <  bß — a , 

b  ̂ — a ^  z <  +  a,

6 + a - z
—  — —, a +  o ^ z ^ b ß +  a,
(bM- a M) 2 o  M

0, o therw ise.

If the support of dM (case (i) or (ii)) exceeds the 
interval [0 , 1], a modified density

d%{z) :=

+ X
X  (z + /), 0 =  z <  1,

/ =  -  X

0 . otherwise.
has to taken. This modification of d  ̂ corresponds to 
the (mod 1 ^transform ation in (25). Now we obtain 
the transition probabilities p v/M(1), v = l , 2  
as follows (using the abbreviation sM =  \ d f / d z \ zeBll\, 
and hence bM -  aM =  su ■ e):

Pv/A !)=?■

M * (i)(z )d z , 2 a < s ^ e ,
fiv

1 (ii) (z) dz , 2 a  ^ e.

(26)

Fig. 9. Schematic illustration o f the effect o f additive 
external noise (equally distributed in [ -  er, er]) on the 
transition probability density d^(z). For sufficiently small 
noise power (Fig. 9 a) external noise effects a decrease of 
the steepness o f the flanks o f dM(z) only. For sufficiently 
strong noise (F ig.9b) also the plateau o f du(z) decreases 
-  in this case the uncertainty production is determined 
mainly by the external noise.
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A survey on the considered situation is given in 
Fig. 9, assuming that the support o f dM does not 
exceed the interval [0, 1[. In the noisy case the graph 
of /  can be considered to be a “noisy band” such 
that a vertical line cuts the noisy band at a length
2 a. Two vertical lines which are passing the left and 
right boundary of the box Bß cut an area AM out of 
the noisy band which is marked by a lining. On the 
other hand, two horizontal lines which pass the 
upper and lower boundary of a “target box” B v. cut 
an area AMVi out of Au which is marked by a double 
lining. Hence, the relative content of Auv. with 
respect to that of AM gives the transition probability 
Pvt/M( 0-

There is a variety of situations which include 
overlappings. Nevertheless, in order to obtain 
“convenient” results we neglect overlappings now. 
At first we consider the case (i). Thus, in the central 
interval [a  ̂ + a, bM — a] approximately in t(^  —2 a/e) 
boxes B Vi, i =  1 ,2 ,. . . ,  int(5^ — 2 a / e), can be placed, 
and the corresponding transition probabilities 
Pvj/^0 ) amount to 1 /sM. (Note that this is the same 
transition probability as in the noiseless case which 
was considered in Section 2.) One “flank” of 
contains approximately in t(2 a /s )  boxes BVj, j  —
1 ,2 ,... ,  int(2o-/e), and the corresponding transition 
probabilities equal [1 -  s ( j  -  1/2)/(2<t)]/5^ . For the 
remaining flank we find the transition probability 
[2a -  £■ int(2cr/e)]2/(4 sM e a). Via (3.2) we now 
obtain for the uncertainty production

i -
2 a
su £

Id sL

int (2 a/e)

2 ■ X
j= 1

1 -  —  0 - 1 / 2 )  
2a

. . . Id  —
s„

1 -  —  ( y - 1 /2 )  
2 a

( 2 a -  e in t(2a /e ))2 ^  ( 2 a -  e in t(2 a /e ) )2

For a small noise power (2 a /e  <  1) we obtain from 
(27):

/ / c ( l , / i ) * l d j „  + — Id — . (28)
sß e a

The Equations (27) and (28) provide exact results if 
stl — 2a /e  is an (positive) integer, and if aß + a

coincides with a divisional point of the e-partition, 
which guarantees that overlappings will not occur. 
From (28) follows that / / c( l ,/ i)  approaches the 
noiseless uncertainty production Id sM, if a<^sß e.
I.e., if the noise power a is small compared to the 
length of f ( B ß), the noise induced uncertainty 
production is expected to be negligible as compared 
to the uncertainty production by the deterministic 
chaotic dynamics.

Let 5min label the minimum value of the slope of 
f ’ smin:= inf d /(z )/d z j. If Smin is greater thanre [0.1]
zero the precision \ /e  of measurement has to fulfil \ /e  
^■Smin/tf =  l/e min in order to have an uncertainty 
production which is mainly caused by the deter­
ministic action of f. Otherwise the external noise 
may considerably affect the uncertainty production. 
(It should be mentioned that the condition e >  emin 
can be mitigated, if the absolute value of the slope 
of /  is small (especially zero) in an area W  which 
has only a small stationary measure (fia( W) <  1).)

A similar investigation can be made for the case
(ii) (strong noise). From a simple analysis we obtain 
in this case

1 - Id
2 a

ini sM I

~ 2 I
7 = 1  12 a

2a  I e 

j  — 1/2 Id
2 a

j -  1/2

e(s^ -  int sM)2 e(sfJ -  int s^)2
2 Su a

Id
4 su a

(29)

If the slope is small (sM <  1), we obtain from (29)

H c (1, n) ~  Id 2 a / £ 4- e sp /(2  a) Id 2/ sM . (30)

The Equations (29) and (30) provide exact results, if
2 a / £ -  sß is a positive integer and if + a is a 
divisional point of the partition. If we have even 
5ß e/2 a (and s  ̂ <  1), the uncertainty production 
is mainly noise determined. Under this assumption 
we obtain

2 a
H c( l , / i ) » l d ---- .

£
(31)

In order to illustrate the influence of external 
noise on the uncertainty production, we have 
calculated the transinformation i/36 f° r the
noisy M-map. In Fig. 10 the results are plotted for 
different values of the noise power a. For a =
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0  1 2  3  4 5

//iteration

Fig. 10. Transinformation I v M<t 1/6(/) o f the noisy M-map 
versus prediction period / using the e-partition ^1/36- 
Parameter: noise power cr/|/3 =  0 (a), 0.01 (b), 0.02 (c), 
0.03 (d), 0.04 (e), 0.05 (f), 0.06 (g). (Curve (a) was 
obtained using the invariant measure f i u y 6, while all 
other curves were obtained operationally from time series 
o f length m  =  20 000.)

|/3 • 0.03 ~  0.052 (case d in Fig. 10) the uncertainty 
production after one iteration ( /=  1) can be readily 
estimated: In the intervals I\ =  [0, l/6 [ and / 3 =  
[5/6, 1[ the absolute value of^ the slope equals 6. 
Hence we obtain su e/ 2  = 0.083 > cr, i.e. we have to 
deal with case (i) for the boxes Bß, /z =  1 ,2 ,. . . ,  
6, 31, 3 2 ,..., 36. From (27) we obtain H^ l3(\,/u) 
^  3.06 bit. In the interval / 2 — [ 1 /6, 5/6[ sM equals 
1/2, and we obtain sM e/ 2  ^  0.007 er, i.e. we can 
use (31) which leads to //c 2(1, / )̂ ~  1.90 bit. 
Numerical investigations show that the stationary 
density g a- mc, i /36 does not essentially differ from the 
invariant density Qm.\/36- Hence / / ^ ’^ ( l , / / )  and 

have a statistical weight of about 3/5 and 
2/5, respectively. Thus we obtain the average un­
certainty production i/36(l)  ~  2.60 bit. This 
roughly estimated value is in good correspondence 
with the operationally obtained value H c M„, i /36 (1) 
=  (2.66 ±0.01) bit. Of course, we do not expect that 
we always obtain such a good correspondence be­
tween the estimated and the actually observed 
values because in (27)-(31) overlappings were 
neglected. Exact values of H c( 1) can be obtained 
using (26) and (3.2). However, arguments similar to 
those used in Section 4 suggest that the additional 
uncertainty production by overlappings is at most of 
the order of lbit also in the noisy case.

This consideration makes evident that external 
noise typically increase the (average) uncertainty 
production. Nevertheless, also the reverse may be 
true. This is the case in maps showing a so-called 
“noise-induced order” (see [13]), where the statio­
nary density g a may differ considerably from the 
invariant density £> =  £>CT=o such that some regions 
which are characterized by a large value of the 
slope of /  are less frequently visited by the noisy 
orbit. Hence external noise may also improve the 
state predictability.

6. Conclusion

An essential question in many sciences is that for 
the prediction of future states of a dynamical 
system. To give an answer to this question scientists 
usually proceed as follows: First they construct a 
state space, then they derive (deterministic) equa­
tions of motion governing the time evolution of the 
system, and finally they measure the initial state in 
order to specify just one orbit of an ensemble. A 
precise implementation of this algorithm would 
provide a satisfactory answer to the question for 
future state, but this may involve immense prob­
lems. Especially it may be very difficult to find a 
complete state space and a manageable set of 
equations of motion. However, in this paper we 
assume that these problems have been satisfactorily 
solved and that we have a low-(one-)dimensional 
map which describes the time evolution at every
discrete time step « = 0 ,1 ,2 ,__  (In Sect. 5 the
effect of external noise is investigated, which may 
represent the influence of “disregarded degrees of 
freedom”.) Moreover, scientists have to take into 
consideration that all states of a dynamical system 
can be measured only within a finite precision. If 
the system is a stable one, a small change of the 
initial state would not essentially alter its time 
evolution. A future state would be called “predict­
able” in this case because it can be predicted within 
the precision of measurement. On the other hand, 
already Henri Poincare [14] pointed out that there 
may be quite different situations. It may happen 
that we have to deal with an unstable system such 
that any error in the measurement of the initial state 
causes a great error in the prediction of the future 
state, i.e., state predictions are limited or even 
impossible. This is the situation in chaotic systems.
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In this paper we have investigated the con­
sequences of a limited precision of measurement for 
the possibility of state prediction in the light of 
information theory. The term “state” as specified in 
this paper means that states which are not resolv­
able by the measuring apparatus can be considered 
to be equivalent to each other. Then we have asked 
for the information on a future state under the 
condition that an initial state is known. This infor­
mation is given by / t (/) =  H \ -  Hc(l), where H\ 
corresponds to the maximum information which is 
attainable on a future state, and H c(l) gives the 
uncertainty on a future state under the condition 
that an initial state is known (/ =  0 ,1 ,2 , . . .  labels 
the prediction period). For a stable periodic motion 
of period p  the maximum information H\ cannot 
exceed Id p  bit. This limit is attained if the 
precision 1/e of measurement is large enough such 
that the periodic attractor is resolved. A further 
increase of 1/e would not provide more information. 
The transformation 7t(/) of a stable periodic motion 
is periodic with a period p*  ^  p. If the periodic 
attractor is resolved, we have 7t(/) = / / j ,  i.e., from 
the measurement of the initial state, all future states 
are known.

The situation is quite different if we have a 
motion on a chaotic attractor. In this case the 
information H x goes to infinity as the precision of 
measurement goes to infinity {H\ -*• — D\ Id e if 
e —► 0, where D\ is the information dimension of 
order 1 [8]). On the other hand, the uncertainty 
production H c(l) will remain finite but positive at 
every level of measuring precision. There are three 
sources that contribute to the production of un­
certainty on a future state (under the condition that 
an initial state is known within a finite precision): 
Firstly, an expanding action of phase flow (“intrinsic 
noise”) contributes to the uncertainty production. 
For chaotic systems the mean rate of exponential 
expansion is given by the Lyapunov characteristic 
exponent (LCE). In Sect. 2 of this paper we have 
investigated relations between the uncertainty pro­
duction and the LCE. We argue that uncertainty is 
produced only in regions of state space which have 
been expanded by the flow of the dynamical system, 
whereas in regions which have been contracted no

uncertainty on the future state is produced. More­
over, contracted regions cannot effect a reduction of 
the uncertainty which is simultaneously produced in 
expanded regions. From this point of view we 
define a quantity /?(/) (see (10.1)) which is related 
to the LCE (see (10.3), (11), and (12)), and which 
gives the uncertainty production by the intrinsic 
noise. Secondly, uncertainty on a future state can be 
produced as a result of the measuring process (over­
lappings). From Sect. 4 we see that at most 1 bit 
uncertainty is produced in addition to h (/) by over­
lappings. For a sufficiently fine e-partition a formula 
is derived (see (24)) which estimates the uncertainty 
production including overlappings for 1-D maps 
characterized by continuous variations of the slope. 
Thirdly, uncertainty can be produced by external 
noise (see Sect. 5). However, if the noise power is 
small compared to d f / d z e ,  and if the stationary 
density of the noisy map does not essentially differ 
from the invariant density of the noiseless map, then 
the noise induced uncertainty production is expect­
ed to the negligible in comparison to that caused by 
intrinsic noise.

Appendix: Some More Examples

For a further illustration of the main results of 
this paper we give some more examples: In Fig. A 1 
we present three one-parameter families f j  
7 = 1 ,2 ,  3, of 1-D maps including their invariant 
densities ey>a. (The time-correlation function of f 2t0t 
was already considered in [15].) From (9.1) we 
obtain the LCEs:

1 1 - 2 a

/ •l, a  —

'-2 ,  a —

a -  1

1

Id a a(l - 2 a )  2 > 0  for 0 < a < l / 2 ,

l d a a ( l - a ) (1 a) >  0 f o r 0 < a < l ,
a -  1

/.3 * =  — y Id a 2*2(l -  a 2)(l-a2) > 0  for 0 <  a <  1.

The uncertainty production follows from (10.3) and 
( 11):

/*;,*(/) = + <5,,* (0
with

S W ) =  2(1 x> 
l o

(I -  2 a ) ,/+i>/2 (1 -  2 a)(/+1)/2 , (1 -  2x)(,+ l>/2 
Id -------------------  if / =  1 ,3 ,5 ,. . .  and ------------------- >

oth erw ise ,
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fl J 2^

i f  0 ^ 2 < o C

StlzäL+l-cC  i f  o C ^Z < l-o L
1 -2oC

1-2
oC

i f  l - o t z z  < 1

4 ^ -  +1-oL i f  0 ^ z < l - o C  
1-oL

1-z
oL

i f 1 - o t ^ z ^ 1

0< ot< 1

l~oC 1+oC

1-2
oL

0 < o C < 1

2(1-oC)

1
2oC

i f  0 ^ 2 < 1 - o L

i f  1 - o C ^ ^ l

2-ot
&  j f c H

2 ^  1

\j2-oC)d.

i f  0 ^ 2 < 1 - o C  

i f  1
P0 ( * ) *  3t°c

1 + cJ.

2  

1 +o(.
2oL

0 ^ z < - 1+cL

~ — < ^ 7
1-f-oC

Fig. A l.  Three one-parameter families o f 1-D maps including their invariant densities. The maps act essentially 
alternately expanding and contracting.

02,Al) =

(1 -  a ) (/+l)/2 (1 -  a ) ( /+' ) /2
------ --------------I d ----------------------

2 -  a a
,  (1 -  a )(/+1)/2 

if / =  1,3, 5 ,.. .  and ----------------- >

otherwise,

^3, a ( 0  -

(1 -  a 2)(/+,)/2 (1 - x 2)</+1>/2 
-------------------I d --------------------

n  _  <y 2\(/+ 1 )/2
if / =  1,3, 5 ,.. .  and ------------------- >

o th erw ise .
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.2 .8

Fig. A2. Uncertainty h3 a(/) on a future state, if  an initial 
state is known, as a function o f the control parameter a for
the map / 3 Parameter: prediction period / (=  1 ,2 ,_, 7).
The dashed lines represent / For sufficiently large 
values o f a, / - A3 ,  coincides with hi oi(l). However, for 
small values o f a , h3 a(l) differs considerably from /• a 
because/3  ̂ has a contracting action in certain regions.

An illustration of /?3,a(0  is given in Figure A2. 
(We will consider only / 3>a because f a and f 2̂  are 
characterized by properties similar to those o f / 3,«.) 
If the prediction period / is an even (positive) 
integer, the uncertainty production /?3,a(/) is given 
by I' ^3, a because in this case f 3rx shows an expand­
ing effect almost everywhere in [0, 1]. The same 
applies, if / is an odd integer and the value of the 
control parameter a is large enough such that a 
fulfils the inequality (1 -  a 2)(/+1)/2 >  a Qn the other 
hand, if / is odd and small enough, f l a has a 
contracting effect in certain regions of the interval 
[0, 1]. Consequently, the uncertainty production is 
greater than / - ^ 3>a in this case. Moreover, for any 
fixed value of the control param eter a e ]0, 1[ we 
find a smallest integer l * a such that h3 oi(l) =  I ■ x3a 
for / >  /*„, i.e., f i x  has an expanding action almost 
everywhere in [0,1] for /> /* ,* . If a approaches 
zero, /3% goes to infinity and the correction term 

(I °dd and fixed) goes to infinity as well. On 
the other hand, / • / 3 a approaches zero as a goes to 
zero. Thus the correction term 03 a (l) becomes the 
more important the more a approaches zero.

In order to explain the great uncertainty produc­
tion after one time step for small values of a we

Fig. A3. Estimation o f the transinformation / t i , ( / ) ~  
~  ^3,*(0 as a function of the prediction period / for the 

map f 3 a . The dashed line gives the plot H x -  I ■ A3 a.

assume an (“fine”) £-partition such that \ / M = e

= 1 -  j + (M  integer). Hence just one box, say

B m, covers the small intervall / 2 =  [ 1/(1 + a), 1[. 
The initial information H j is easily obtained from
(1.2): H l =  1 + y ld ( M — 1). One bit corresponds to 
the information whether the orbit is in B M or not. 
{ I d ( M -  1) is the information on that box out of 

which contains the orbit. The factor 1/2 
refers to the statistical weight of these boxes. The un­
certainty production after one time step can be found 
as follows: If the orbit starts in /] =  [0, 1/(1 + a)[, 
no uncertainty is produced after one time step 
because the orbit can reach only one box, namely 
B m. On the other hand, if the orbit starts in BM, it 
may reach any point in I\ after one time step. The 
corresponding uncertainty production is given by 
Id ( M — 1). The statistical weight of this event is 
1/2. Consequently, the average uncertainty H c 3 a (1) 
equals y ld ( A / -  1). (Of course, / / c;3,a(l) could be 
obtained immediately from (2.3) as well.) Hence, 
H x ~  # C; 3,3 ( 1) = 1 bit gives the average information 
on a future state after one time step. This is the 
information whether the orbit is in BM or not. After 
a further time step (/ =  2) most uncertainty, pro­
duced by the drastical expansion of BM after the 
first iteration, is destroyed due to the contracting 
action of / 3 a( on f 3̂ { B M). Hence the initial state 
contains much more information on the position of 
the orbit after two iterations than on that after one
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time step. This consideration can be repeated for
/ >  2 .

An alternating expansion and contraction and the 
corresponding information (resp. uncertainty) flow 
described above is a typical property of the maps 
investigated in this paper (A/-map and fjA, j  =  1, 2, 3). 
In a plot of the transinformation Ix 3,*(/) ~ 
H\ ~ h3 :((/) as a function of the prediction period /

(see Fig. A3), this behaviour is reflected by the 
“zig-zag” graph. In [6] we present results for the 
chaotic motion of a parametrically excited pen­
dulum on an attractor consisting of two bands of 
distinct largeness which are alternately visited. In 
this case the flow has an alternating expanding and 
contracting action. Consequently, / t(/) was found to 
be “zig-zag” as well.
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