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The possibility of state prediction in deterministic chaotic systems, which are described by
1-D maps, is discussed in the light of information theory. A quantity /(/) is defined which
represents the production of uncertainty on a future state by the chaotic dynamics (intrinsic
noise) after / time steps have passed. 4 (/) is related to the Lyapunov characteristic exponent.
Moreover, the influence of the measuring process (overlappings of mapped boxes of state space
partition) and external noise on the state predictability are investigated quantitatively.

1. Introduction

In recent years one of the most intensively studied
subjects in physics, chemistry, and other fields have
been deterministic, dissipative, dynamical systems
displaying a so-called “chaotic” behaviour. Typical-
ly, two neighbouring orbits of a chaotic system
diverge on an average exponentially as time in-
creases, which is indicated by a positive Lyapunov
characteristic exponent (LCE). Thus, if one has no
exact knowledge on the initial state of the system
(practically this is always the case due to the limited
precision of any measurement), a predicted state
could differ enormously from the actually observed
one, i.e., long range state predictions are impossible.

The time evolution of the states of a deterministic
system is usually governed by a set of first-order
differential equations or in a discrete time version
by a set of difference equations. If they are suitably
“well-behaved”, various theorems can be applied
guaranteeing the uniqueness of any orbit starting
from a given area of state space. However, any real
system interacts with its environment in a com-
plicated manner. Consequently, deterministic
equations have to be modified by stochastic terms
in order to describe reality. Chaotic orbits sensitive-
ly respond to external fluctuations. Hence, state
predictions would be limited, even if an initial state
was known exactly.

In this paper we are first of all interested in the
effect of a limited knowledge of an initial state on
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the possibility of state prediction. This problem was
investigated already by several authors [1]—[7]. For
a detailed investigation Farmer [3] used the quan-
tity /; representing the (average) information on a
future state contained in an initial state. 7, is a well-
known quantity in information theory. Some de-
notations of /; are “mutual information”, ‘‘syn-
entropy”’, and “transinformation”. (We prefer the
latter denotation.) The definition of /; for a dynam-
ical system requires a partition of state space which
is assumed to be induced by a limited precision of
measurement and a certain gauging of the (digital)
measuring equipment. Thus, 7, characterizes the
symbolic system which is induced by a partition of
state space (see e.g. [4—6]). Consequently, an inves-
tigation of /, is justified from an experimental point
of view. However, in order to characterize the
“uncertainty production” of a system itself (and not
that of the symbolic system only) one should also
try to investigate quantities which are defined
independent of a partition of state space. In his
paper [1] Shaw has done some stimulating work in
this field. He argued that the uncertainty on a
future state after one time step is given for simple
systems by the LCE. It is the purpose of this paper
to make a contribution to this discussion. In partic-
ular, we will demonstrate that some of Shaw’s
concepts do not properly reflect reality as they
break down even for simple systems. We argue that
uncertainty on a future state is produced in expand-
ing regions of state space only. In contracting
regions uncertainty is neither produced (if we
neglect “overlappings’) nor is uncertainty, which is
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reduced. From this point of view the LCE is found
to be a lower bound of the uncertainty production
after one time step.

In this paper we restrict our investigations to
1-D maps. Nevertheless, our ideas can be applied
to s-D maps (s=2,3,4,...) and sets of differential
equations as well. The paper is organized as follows:
In Sect. 2 we give a review of the definition of the
transinformation /; for dynamical systems. After
this we introduce a quantity / (/) which is related to
the LCE. and which gives the uncertainty on a
future state, if an initial state is known (/=0, 1, 2, ...
labels the prediction period). /(/) is defined with-
out partitioning state space, hence / (/) characterizes
the system itself. In order to illustrate our ideas, we
investigate the so-called “M-map” in Section 3.
Uncertainty H (/) on a future state of a symbolic
system may also arise from overlappings of mapped
boxes (i.e., divisional points of the partition of state
space are not mapped on divisional points). Hence a
relation between / (/) defined in Sect. 2 and H (/) 1s
of interest. In Sect. 4 we take this fact into account
and give lower and upper bounds of H.(/) which
are related to /1(/). Moreover, the effect of over-
lappings is investigated in the limit of an infinitely
fine partition. As an illustration some results for the
well-known logistic equation (2 = 4: fully developed
chaos) are presented. Section 5 is devoted to an
elementary investigation of the effect of external
noise on the uncertainty production of the dynami-
cal system. In the appendix we present results for
several families of piecewise linear 1-D maps in
order to give further illustrations of our main ideas.

2. Uncertainty Production of 1-D Maps 2,41 = f(z,)

In order to explain our motivation for the defini-
tion of a new quantity /(/) describing the un-
certainty on a future state, reached / iterations in the
future, under the condition that the initial state is
known, we start with a review of the definition of
the transinformation /, for dynamical systems.

2.1. Transinformation

As already mentioned above, the definition of I,
requires a partition

DS e M
A= 1B, =,

B,nB,=0 if v#p,

of the domain containing the orbit of the system.
This domain is assumed to be bounded. Con-

sequently, # consists of a finite number, say M, of
bounded boxes. Throughout this paper we only
consider so-called ¢-partitions. An e-partition %, of
the interval [0, 1[ we define as follows:

A= (B M. By=[(u—1)epel,

where M = 1/¢ is a positive integer. Thus, each box
of an e-partition is assumed to be of equal size. (For
shortness we sometimes say “partition” instead of
“g-partition™.) From a physical point of view the
partition may be induced by a (digital) measuring
apparatus with a finite precision 1/¢ of measure-
ment and a certain gauging corresponding to the
position of the partition. The measuring apparatus
allows us to determine the box B, containing the
orbit [z,]52 of the system at every time step n.
Hence the boxes can be characterized as states of
the system.

Now, let p,(n) label the probability that the orbit
visits the box B, at time n. Thus a measurement at
time n provides the (average) information

M
H(n)y= 2 p,(n)1d 1/p,(n), (1d =log,).

u=1

using the well-known formula by Shannon. In the
following we distinguish between the expressions
“information” and “uncertainty”: We say that we
have the information H (n) about the state B, of
the system, if we have determined it as a result of a
single measurement at time »#. On the other hand, if
no measurement was carried out, we say that H (n)
gives the uncertainty about the state B ).

Let us assume now that we have measured B,
at the initial time ny. Thus we have obtained the
information H (ny). An interesting question is now
whether H (n;) contains information about the
future state B,,,+1). /=0, 1.2..... In order to give
an answer to this essential question, we introduce
the joint probabilities p,,(n./) that the orbit is
found in B, at time ny and / time steps later in B,,
vwu=1.2,....M. [=0,1,2,.... Hence the joint
uncertainty H(ng./) of a certain combination
(Bui(ng)s Buno+1)) 1s given by

(1.1)

M
H(ng. D= >, Pou(ng. ) 1d 1/p,, (ng, 1).
vou=1
Of course. H(ng.!) also gives the information
obtainable in two measurements at times np and
ny+ [ If we have only the information H (ng) from
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one measurement at time #ng, there will remain the
uncertainty

Hc(ng. 1) = H(no, 1) — H(no) (2.1

about the future state B,(,,+;,. Now we introduce
the conditional probabilities

Pou(no. D /p,u(ng) if p,(ng) £0
0 otherwise,
vywu=12....M

p\'/y(’loﬁ l) =

which gives the probabilities for the transitions
from B, at time n, to B, at time ng+/ The
uncertainty H.(ng, /) defined in (2.1) can now be
written as follows:

M
He(no. 1) = Y p,(no) He(ng, L. ) 2.2)
u=1
with "
He(ng. L) =2 puulng.)1d 1/p,(ng ). (3.1)

v=1

From well-known relations of information theory
(see e.g. [8]) we know that

H.(ny,l) = H(no+ 1), 4)

i.e., the uncertainty about the future state B s+
can only be decreased by a measurement at time ny.
The equality in (4) holds if the states B,,, and
B, n,+1) are statistically independent (p,,(ng, /)
=pu(ng+1). He(ng,!) is called the conditional un-
certainty on a future state B, .+, under the condition
that an initial state By, is known. Shaw [1] refers
to this quantity as “information production”, i.e.
H_(ny, ) gives the “new” information (in addition to
the “old” information H (n,)) which is obtainable in a
second measurement at time no+ /. From our point
of view H.(ng,!) should be called “uncertainty
production” because it gives the uncertainty on the
future state B, (,,+; Which remains, if only the
initial state was measured. From (4) follows that

Ii(ng, 1) = H(no+ 1) — Hc(ny, 1) (5.1)

is always nonnegative. /,(ng, /) is called “‘transinfor-
mation” because it gives the information on the
future state Bj(,+; Which is obtained from a
measurement of the initial state B,(,,. With other
words: 1;(n, [) gives the decrease of the uncertainty
on the future state by measuring the initial one.
Ii(ng,!) equals zero if these states are statistically
independent, i.e. if state predictions are completely

f'(B)={zeA|f'(z)e B}, v=1,2,...

impossible. Otherwise it is positive and reaches its
maximal value H (ng+/) if there remains no un-
certainty about B, (,,+; due to the measurement of
Bu(no)'

Now we reverse the question for the possibility of
state prediction and ask for the information about a
former state B, (,,) under the condition that a present
state By (n,+1 1S known, i.e., we now ask whether a
dynamical system is able to remember its previous
state. Obviously the uncertainty about a former state
B, (n,- under the condition that a present state
B+ Was measured, is given, in analogy to

(2.1), by
H_ (ng, —/) = H (ng, [) — H(no+ [)

Hence, in analogy to (5.1),
Ii(ng, —1) := H(ng) — Hc(ng, —1)

gives the transformation on the former state B, ).
if the present state B, (n+; 1S known. A simple
analysis proves that I, (ng, —/) equals I,(ng, /). Con-
sequently, /;(ny,/) can be interpreted formally in
the same way as [;(ng, —/). More specifically, we
say that the system has “‘forgotten™ its initial state
B, (ny) after / time steps, if I;(ng, /) equals zero.

So far we have considered processes which are
not of necessity stationary. Nevertheless, in the
following we consider only stationary processes.
Hence all quantities defined above are now assumed
to be independent of the initial time n, which is
equalized to zero. With other words: Transients are
supposed to have died out such that the orbit of the
(dissipative) system has reached an attractor A,
which is assumed to be bounded. We further
assume to have an ergodic invariant (“‘natural”)
measure /4 (which is defined on a suitable g-algebra
of subsets of 4) such that

ABy)=p,, n=12,.... M, (6)

gives the probability that an orbit visits the box B,
at any time n. In the following we say “almost
everywhere” and “almost every” with respect to f.
Moreover, i is assumed to be defined by an
invariant density o(z) (for more details of the
definition of a “natural” or “physical” measure see
e.g. [9]). Let f~/(B,) label the set which is mapped
on B,, if the 1-D map acts / times on it:

QM7
(fisfoftLl=1,23 ... '=1)
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Hence

AU/ B)OBY _
ﬂ(B#) pl‘/u()e

is the probability for the transition B, — B, after
/time steps. Because of the stationary situation we
have H(no+ /)= H(ng) = H; (i refers to “initial”).
The transformation defined in (5.1) can now be
written as follows: '

wu=1,2....M (7

I(l)=H;— H.(]) (5.2)
with
M
Hi=) pJd1/p,, (1.2)
u=1
M
H(l)= 3 pyHc(lu), and (2.3)
u=1

M
Hellop) = 2 puu(D)1d 1py (D). (3.2)
Shaw [1] argues that the uncertainty H.(/) on a
future state is given for simple cases by /- LCE.
Especially, he argues that the system has forgotten
the initial state (and thus state predictions have
become impossible), if /- LCE equals approximate-
ly H;. ie., if the produced new information (un-
certainty) has “pushed away” the initial information.
In the following we present a refinement of the
argumentation of Shaw for simple 1-D maps.

2.2. Uncertainty Production and Lyapunov
Characteristic Exponent

Now we give a heuristic argumentation for a sub-
stitution of the uncertainty production H (/) by a
new quantity / (/) which will be defined independent
of a partition of state space. However, we start with
an e-partition such that the slope df/dz and the
invariant density o are nearly constant in most
boxes. For a piecewise C2-function f and a piece-
wise C'-function g this will be attained if ¢|d?f/dz?
<1 and ¢ dpo/dz <1 almost everywhere in [0, 1],
respectively, i.e., the e-partition has to be fine
enough. Moreover, if these assumptions do not hold
in a few boxes, the error we make is expected to be
small, if these “exceptional” boxes have a small
measure 4 such that they do not essentially con-
tribute to the uncertainty production. In the follow-
ing s,=df/dz|.cp,, u=1.2,.... M, labels the

absolute value of the slope in the box B,,. In general,
divisional points of the partition are not mapped on
divisional points by f. Thus, overlappings of mapped
boxes have to be taken into account. As will be seen
later (Sect. 4), overlappings increase the uncertainty
on a future state. In order to obtain a lower bound
of H.(/), we neglect the overlappings at this stage.

Now consider a box B, with a slope s, greater
than one. Thus, s, gives the approximate number of
transition probabilities p, (1), i=1,2,...,int(s,).
which equal approximately 1/s,, and the rest of
them equal zero. Consequently, a lower bound of
H(1, p) is given by

int(s,)

> P 1d 1/p,,, ()= 1ds, (cf. (3.2)).
i=1

On the other hand, if f contracts the box B, (i.e.,
s, = 1), one of the transition probabilities equals
one, while the rest of them equals zero. Consequent-
ly, H.(1, 1) equals zero in this case, i.e., there is no
uncertainty produced on the future state. A con-
tracted box B, is not resolvable by the measuring
apparatus, assuming a fixed finite measuring preci-
sion, but the information on the position of f(B,,) is
still known due to the knowledge of the position of
B, and the deterministic action of f on B, (see
Figure 1). Thus we are motivated to define the
average uncertainty /(1) on a future state after one
time step as follows:
+ 00

[ e(df/dz —1)1d |df/dz| o(z) dz

-0

=[O (df/dz —1)1d df/dz da. (8.1)

h(l) =

with
0() = { I. z>0
710, otherwise.
f
— =
B/‘] f(B/.)

Fig. 1. Schematic representation of a contracting action of
the map f without overlappings, i.e. f(B,) contains no
divisional point of the e-partition.
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Fig. 2. Schematic illustration of a contracting action of the
second iterate of f. The uncertainty produced by the first
expanding action of f'is vanishing in the second step.

Here the sum over u (cf. (2.3)) is replaced by an
integral in order to obtain an average over all
possible initial states. Note that the integral in (8.1)
is taken over that part where the absolute value of
the slope of f is greater than one, because un-
certainty on a future state is produced only in
expanded intervals. If f acts expanding almost
everywhere on supp o(z) = 4, (8.1) reduces to the
well-known formula for the LCE:

j= [1d |df/dz| da. 9.1)

Thus, in general we obtain
A=h(l) S H(1).

/ is a lower bound of the uncertainty on a future
state B, ())-

Now we investigate a lower bound /(2) of the
uncertainty H.(2) on a future state B,(), if an
initial state B, is known. Let B, be a box which is
expanded by the action of f (first iteration: s, >1),
as illustrated in Figure 2. Thus the uncertainty 1d s,
is produced in the first step. Now it may happen
that f contracts f(B,) such that in total f? has a
contracting action on B,, ie., |df*/dz/=1 for
z € B,. In this case after the second iteration no
uncertainty is produced with reference to the initial
state. The uncertainty produced by the first expand-
ing action of f may vanish in the second step. Note
the difference to the statement above regarding the
uncertainty production after one time step: Con-
traction cannot effect a reduction of uncertainty
which is simultaneously produced in expanded
regions, but contraction can reduce uncertainty
which arose from the expansion in a former time
step. On the other hand, if f? has an expanding

action on B,, uncertainty is produced after two
iterations. Thus, the expanding or contracting
character of the action of f? determines whether
uncertainty on the future state B, ;) is produced or
not. These considerations can be extended to
include prediction periods /> 2. Consequently we
are inclined to define

h(l)y:={O(df"/dz - 1)1d |df'/dz|da, (10.1)

which is expected to be a lower bound of the
uncertainty H (/) (see (2.3)) if the assumptions
given above hold for f".

We have assumed ergodicity, hence 4 can be
determined operationally from a very (exactly:
infinitely) long time series {z, =f"(Z)}no:

m—1
4= lim 1/m Y 1d|df/dz|.|
m—+o n=0
= lim 1/mld|df™/dz .|, 9.2)
m-—+ 0

for almost every zj € A.
In analogy, 4 (/) can be obtained operationally

too:
m—1

1
h(ly= lim — Y o(df/dzl.|-1)
m—=+o0 M ,_

-1d|dfY/dz), ). (10.2)

it follows from the chain rule applied to df'/dz that
(10.1) can be transformed as follows:

h(ly=1-7+ (), (10.3)

with

d(y=[e1—df"7dz))1d 1/|df!/dz| da. (11)

é(/) is a correction term for the formula proposed
by Shaw [1] and fulfils the relation 6(/) = 0. The
equality holds if f/ has an expanding action
((df/dz/ = 1) almost everywhere in 4. Thus we
have, in general, the relations

l-i=h()SHA(D), [=1,2,3,.... (12)

Due to the supposed ergodic chaotic dynamics
almost every orbit which starts on the attractor A4
generates a “typical” orbit such that the limit 1 of
(9.2) is independent of almost every initial value z,.
Consequently, the sequence of functions in zg

(1/m1d |df™/dz|. | h2 (13)
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is pointwise convergent for almost every zo € A. The
pointwise limit function is given by 4 = constant > 0.
If we even assume a uniform convergence of the
sequence (13) almost everywhere in A, there is a
least positive integer /* which is independent of zg
and which guarantees that for /> /* the slope
df'/dz| is greater than one for almost every z € A.
Hence, from (11) follows

o()=0 for [>[*,

and (10.3) reduces to that one proposed by Shaw
(1]:

h(ly=1-7 for [>I*

Nevertheless, in general the correction term d(/) is
of importance, especially for small values of the
prediction period / (I = Hipjja1/ 4 < [*). In the follow-
ing (Sect. 3 and the appendix) we present some
examples in order to illustrate these statements.

3. An Example: The So-Called “M-Map”

In order to illustrate our idea of uncertainty
production presented above, we define a piecewise
linear 1-D map fj, 4 (called “M-map”) as follows:

z/, O0=2z<o
—az/(1/2=2)+ 1 +a%/(1/2 — ),
o) x=z<1/2
g(2) = <
e 2z/(1/2 = o) +1— o (1= 2)/(1/2 ),
12=z<1—ua
—z/a+1/a, l—a=z=1

for 0<a<1/2.

Figure 3 shows the graph of f, , including that of
its twofold iterate £, (dashed line) for o = 1/6. If
the control parameter o approaches 1/2, the well-
known symmetric tent map appears. The probability
density

1/2-22), 0=z<1-aq,
om«(2) = {1/(2a), l—a=z=1,
0, otherwise,

fulfils the Frobenius-Perron equation
QM.J(:) = Z QM.J((ZI')/|dfM‘1/d: :.l s

where the sum is taken over all z; which are
mapped on : by fu,. Hence o, , defines an
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/;:‘(2)1
- | 7 K T
=1
1 I\ ‘'
7'£‘| v / \ v W
] | / \ 1 I
1 / \ 1\
1 d \ 1\
2 [, T
[ /’ \\ AW
|
| { ! v
i / v
1 |
/ \
/ : y
0 oL 172 1-ot 1 z

Fig. 3. Graph of the M-map f),, including that of its
second iterate /7 /.

invariant measure /iy , Which is assumed to be
ergodic. Note that the probability to find an orbit in
the “small” interval [1 — «, 1] is the same (namely
1/2) as to find it in the “great” interval [0, 1 — a].
This is due to the special action of the map: in the
first iteration the interval [o— a% 1 — (x—a?)] is
condensed to [l —a, 1] and then, in the second
iteration, spread over the entire interval [0, 1].

The LCE is easily obtained from (9.1) using the
invariant measure /i »:

1
IMoy = ;T]—ld (172 - 0()“/2_1) o,

For 0 <2< 1/2 the LCE 7, , is always positive.
Hence every system of the family | fa 4jxeo, 1/ 1S
a chaotic one. The uncertainty on a future state can
be obtained from (8.1):

AM. @ 1/4 < a< 1/2,
hual)=1 lda 0O<a=1/4 -
20—2" -

If fu » is expanding in [0, 1] (i.e., 2 € ]1/4, 1/2]), the
uncertainty after one iteration is given by the LCE.
On the other hand, for « € ]0, 1/4[ fy; , has a con-
tracting effect in ], 1 —«[, and the uncertainty
production /1y, (1) is greater than /, ,:

hM.x(l)_

_
1

}vM.zzéM.z(])

0 1/14=0<1/2,
1/2 — 172 —
o d o
| —a x

0<a<1/4.
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4 —————

3
3
X
s 2f
X
o

Fig. 4. Uncertainty /,, , (/) on a future state of the M-map
fu 2, if an initial state is known, as a function of the
control parameter o. Parameter: prediction period /
(=1,2).

If 2 approaches zero, dy, ,(1) goes to infinity, while
/M. remains finite (Ap, — 1/2 if o — 0), as illus-
trated in Figure 4. Thus the correction term dy (1)
becomes the more important the more a deviates
from 1/4 and approaches zero. This is a typical
behaviour also for the maps considered in the
appendix and will be discussed there in more detail.
For /=2 fl;, (0 <o < 1/2) is expanding in [0, 1].
Thus we obtain for the uncertainty production

hM.at(l)z l';~M,1$ 1=27 3,4,... s

Now we consider special e-partitions %,, €= a/i
with i=1, 2, 3, ..., of the interval [0, 1], and special
maps fu., 2=1/Q2k+2) with k=1,23,....
Thus, %4, is a Markov partition with respect to fj ,,

» fm.» 1S monotonous in every box B, of the
partmon and fy , maps the set {u- e“’eo of
divisional points of %, onto itself. In this case the
initial information H;.,s, is immediately obtained
from (6) and (1.2) using the invariant measure i »:

Hipa=1d1/e+1/21d 42(1 — 2).

The uncertainty H.. (1) on a future state B, is
easily obtained from (7) and (2.3):

Id o
20—-2"

Hc'.M.az(l):
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T, 0015 )/ bit

0 1 2 3 4 5

literation

Fig. 5. Transinformation /.y /6(/) = H; — Hc, p 1s6(/) of
the M-map versus prediction perlod [ using the e-partition
%36 (points). The dashed line represents H;— /" 4y /6,
/iy =1.15..., and the solid line H; — hy, ]/6(1) Obvious-
ly hpg 06 (1) describes the uncertamty production more
properfy than /- Ay .

H (1) 1s in perfect correspondence with the
uncertainty /sy, ,(1) (see (14)) which was calculated
from (8.1). This is due to the special choice of the
partition of state space which eleminates the effect
of overlappings, and which guarantees that the
slope of f3 , 1s constant in every box of the partition.
As mentioned above, we would, in general, expect
that Ay ,(1) is a lower bound of H u .(1) (see
(12)).

As illustrated in Fig. 3, fi; , becomes more com-
plicated in shape as / increases. Thus, for a fixed
parition %, there will be a positive integer /, such
that %, is no Markov partition with respect to f3 , if
[ = ly. Either there occur overlappings, or fu 4 is not
monotonous in each box, or both. In these cases the
uncertainty /s ,(/) cannot be related to He (/)
any longer. This statement is illustrated in Figure 5.
%36 is a Markov partition with respect to fiy 1>
/=1, 2, and the slope df};/s/dz is constant in every
box B,, u=1,2,...,36. Hence, the uncertainty
H m6(l) equals hypy/6(l). For [ = 3 overlappings
occur and the slope of fi; s varies within some
boxes. As a result we obtain He. u 1/6(/) < has1/6(1),
ie, for /=3 hy() cannot be related to
H pm,16(1) any longer.

4. Uncertainty Production Due to Overlappings

In Sect. 2 we discussed the uncertainty production
of 1-D maps neglecting the fact that uncertainty
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f(B[,‘)

~o

Fig. 6. Schematic representation of a contracting action

of /. Due to an overlapping 1 bit uncertainty arises in this
case.

may also arise, if divisional points of a partition of
state space are not mapped on divisional points, i.e.,
if overlappings of mapped boxes of the partition
occur. Figure 6 shows this situation for 5, < 1, i.e.,
if f contracts the box B,. Due to an overlapping
1 bit uncertainty may arise in this case. (Note the
difference to the case of no overlappings where the
contracting action of f does not contribute to the
uncertainty production.) An investigation of the
effect of overlappings appears appropriate because
overlappings do occur in experimental measure-
ments, at least in general.

We start our investigations with piecewise linear
maps f (f: [0, 1] — [0, 1]) assuming that there is a
unique invariant density @ (which is a piecewise
constant function in this case) such that we have a
finite set {z;}%, of so-called “points of discontinu-
ity”. We consider z; to be a point of discontinuity if
at least one of the following conditions holds:
(1) / is discontinuous at z;, (ii) ¢ is discontinuous
at z;, (ii1) df/dz does not exist at z;. (E.g., the
M-map considered in Sect. 3 has the following
points of discontinuity: 0, o, 1/2, 1 — o, 1, and the
map f), considered in the appendix has: 0, =,
1 -2,1.) A box B, of the e-partition %, of [0, 1] is
called “box of discontinuity”, if B, contains at least

Case a) (s;z 1):

1 M;-1
Hye* () =lds;+——1{ 2 [q

I : iz

with

g5t = (i-s;— d;/e) —int(i - 5;— 4,/ ¢),
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one point of discontinuity. Otherwise B, is called
“box of continuity" Now we introduce a (finite)
decomposition {I;}%_; of [0, 1[ which unities adjoin-
ing boxes of equal type such that each interval of
the decomposition is either a (finite) union of
adjoining boxes of continuity (in this case [; is
called “interval of continuity™), or a (finite) union
of adjoining boxes of discontinuity (then /; is called
“Interval of discontinuity”). The intervals of con-
tinuity are assumed to be as large as possible such
that they adjoin only one interval of discontinuity.
Moreover, if /; is an interval of discontinuity, and
only the left boundary of /; is a point of dis-
continuity, then /; can be con51dered in the follow-
ing as an interval of continuity. More specifically, if
all points of discontinuity coincide with divisional
points of the e-partition, we say that we have no
interval of discontinuity. If the e-partition is fine
enough, the intervals of continuity typically contain
a large number of boxes, and the intervals of dis-
continuity typically consist of only one box.
(Obviously the number of intervals of continuity
cannot exceed k*.) In the following, we restrict our
attention to intervals of continuity because these
intervals typically give the dominant contribution to
the uncertainty production, if the e-partition is fine
enough, and if the prediction period / is small
enough. We now will derive formulas for an effec-
tive calculation of the uncertainty production after
one time step (/= 1). Thereby we will learn about the
influence of overlappings on the uncertainty pro-
duction.

Let M; label the number of (adjoining) boxes in
the interval /; of continuity, and s; = [df/dz . ¢ ).
The situation is shown in Fig. 7a and b for an
expanding (s;= 1) and a contracting (0 <s; < 1)
action of f, respectively. From a somewhat extensive
but simple calculation we obtain from (7) and (3.2)
the uncertainty production in /;:

PId 1/g8P + (1 —¢2°) 1d 1/(1 — g5®)]

+(4;/e)1d e/4;+ qf3f Id 1/g58

(15)
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Caseb) (0 <s; < 1):

1 &
He-n(1) = 2 [gfm1d /g + (1
J =

with

Sj'S

di+i-¢g . A;+i-¢ Si M -e—A4;
g = — —mt( ] ) Nj:=int<————’ j ¢ ’).
&

§i &

4; labels the shift, as illustrated in Figure 7. It
fulfils 0 = 4; < & (If M; equals 1, the sum over / in
(15) is equalized to zero. Moreover, if §; M; ¢ < 4;
(i.e., Nj=—1), we set H»*"(1)=0.) H:*®(1) - 1dss;
and Hl"(1) give the additional uncertainty
production due to overlapping in the expanding and
contracting case, respectively. The average uncer-
tainty production is now obtained from
k
Hc(1)=_zl A(L) HE(D). (17)
=
In (17) the average over the uncertainty production
in all intervalls of the decomposition is taken.
(Hi(l)= Hbon(1), if sz 1, and Hb(l)=
HLI-eon(1), if 0 <s; < 1.) If I; is an interval of dis-
continuity, H5(1) has to be obtained directly from
(7) and (3.2). For a sufficiently fine e-partition the
intervals of discontinuity are expected to be of
relatively small measure g such that they do not
essentially contribute to the average uncertainty
production H.(1). Hence a “good” estimation of
H.(1) is expected to be obtained, if the average in
(17) is taken only over the intervals of continuity.
Now we are looking for some estimations of
HUoP(1)—1ds; and HOZ"(1). If we use the
relations

0=¢qldl/g+(1—¢g)ld1/(1-¢g)=1 and
0=¢qld1/g=1/(eln2)=0.5307...,
which hold for every ¢ € [0, 1], we obtain
0=H(l)—1ds;
1 1 2 1.0614 ...
=—|1+— —1)|=— (18)
Ry M; \eln2 s;
and
N;+1 1—4;/ (19)
0= Hbor(l)s—L—=5+ I8 <5, +1/M,.

M; M,

— g™ 1d 1/(1
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= 4],

(16)

.‘t’(Z)

slope: s; 31

e e B
- I.———l a)

slope: 0<sj<1

/ T_"—j

I -y

/

Fig. 7. Schematic representation of an expanding (Fig. 7a)
and a contracting (Fig. 7b) action of f on an interval /; of
continuity.

The upper bounds in (18) and (19) often give useful
estimations of the maximum additional uncertainty
production due to overlappings. Nevertheless, some-
times they exceed 1 bit, though from (15) and (16)
follows that the additional uncertainty production
due to overlappings cannot exceed 1 bit. The lower
bounds in (18) and (19) are reached, if the shift
equals zero, and if the slope s; in case a) (s; = 1) and
1/s; in caseb) (0<s;< 1) are (positive) integers.
Under these assumptions no overlappings occur in
I;. This situation was already discussed in Section 2.
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There we defined /(1) (see (8.1)), which equals exact-
ly H.(1), if the assumptions given above hold for
every interval of continuity, and if there is no
internal of discontinuity. From this consideration it
becomes evident that there are two different reasons
for the occurrence of overlappings which cause an
additional uncertainty production: firstly, the shift
A; may differ from zero, and secondly the slope s;
(in expanding) and 1/s; (in contracting regions) may
be no integer.

Now we assume that s; (in case a)) and 1/s; (in
case b)) are integers, but the shift 4, does not of
necessity equal zero (0 = 4; < ¢). In this case (15)
and (16) can be written as follows:

HEo®(1)~1ds;

1 1
=—[(4y/e) lde/a;+(1-4,/0) 141/(1-a)/e)] = —.

J J

and
I;, con _ N/+l
H; (1) = o [g;1d 1/g;+ (1—¢g;) 1d 1/(1—g,)]
J3
with
A
qj: / _lnt( J )
j Sj'a

In the following we assume that the shift 4; is
vanishing, and s;- M; (= N;) is assumed to be an
(positive) integer. Hence just N, boxes of the ¢-par-
tition are covered by f(/;). At first we consider the
case of an expanding action of f (s; = 1). The slope
s; can now be written as follows:

sj=1nt(N;/M;) + n;/m;,

n; and m; (n; < m;) being assumed to be prime to
each other. A simple calculation reveals that
HZI*® (1) in (15) can now be written as follows:

m;j

Z—l—ldﬂ.

HEP(1)~1ds; = (20)
Sj mj = m]' 1
The sum in (20) can be estimated as follows:
2 2 m; ;
— > —Id L+ <2fqldl/qdg= .
m; Z:]m_,- ; < 2leldlindg=g o

Hence we have a new upper bound for Hl» ¢ (1) —
Ids;:

1 0.7213...
2In2 ’

I
HE*® (1) —1ds; < —- (21)
Sj

Sj
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1.e., in this case due to overlappings less than
1/(s;21n2) bit uncertainty is produced in addition
to Ids;. In the same way an analogous result is
obtained in the case of a contracting action of f. The
inverse of the slope can then be written as follows:

1/s;=int(M;/N;) + m;/n; ,

m; and n; (m; <n;) being relatively prime. For
Hl-<"(1) in (16) we now obtain

2s; & 0K 55
H 1 con — el ST, . 22
C (]) nl’ 1‘;0 n/. I 21n2 ( )

The greater m; in case a) and »; in case b), the more
HOe*(1)=1ds; and H[»<"(l) approach their
respective upper bounds.

If the shift 4; is not vanishing, the additional
uncertainty production due to overlappings can be
greater than the upper bounds in (21) and (22).
However, if m; and »n; are large compared to 1,
1/(s; 21n2) and s;/(2 In 2) give good approximations
for H®P(1)—1ds; and HJ*"(1), respectively,
also for 4; # 0.

So far we have only considered the prediction
period /=1. It should be noted that similar con-
siderations can be made also for f/,/=2,3,4,....in
order to obtain the additional uncertainty produc-
tion due to overlappings after / time steps. The
decomposition of [0, I[ into intervals of continuity
and discontinuity varies, in general, for different
values of / — typically the number of points of
discontinuity grows, if the prediction period /
increases till there are intervals of discontinuity
only. However, if / is sufficiently small such that the
uncertainty production in intervals of continuity
predominates, we have the following estimation:

h(ly=H.(l)=h(l)+1bit. (23)

Up to now piecewise linear maps have been
considered. In the following we use the results
derived above for a somewhat heuristic investiga-
tion of the additional uncertainty production due to
overlappings in 1-D maps which are not piecewise
linear. Let /' be ‘“essentially nonlinear” which
means that // has no linear piece (i.e., d2f//dz2# 0
almost everywhere in [0, 1]). We assume to have a
fine enough e-parition such that the contributions of
intervals of discontinuity to the uncertainty produc-
tion can be neglected, and [0, 1[ can be nearly
completely composed of a very (infinitely) large
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number of intervals of continuity where f' is nearly
linear. If the slope s/ = |df'/dz| varies continuously
from one interval to the other, the majority of these
intervals will be characterized by large values of m;
and n; (cf. (20) and (22)). Consequently, 1/(s'2In 2)
and s/(2In2) give good approximations of the
additional uncertainty production due to overlap-
pings in expanding and contracting regions, respec-
tively. Hence we expect in the limit ¢ — 0:

H.() 7&(1), with
! I -1
ﬁc(l):=h(/)+ j@(‘if 1)- (;i_
dfl -1 . df[ ~
+9(‘E —1) ’E dia. (24)

Obviously A, (/) fulfils the inequality:

- 1
h()=H. () = /1([)+m

To demonstrate the validity of our estimation, we
now present some results for the well-known logistic
map (see e.g. [10])

JLa(@)=az(l - 2),

For 2=4 an ergodic invariant measure fp 4 Is
known which is derived from the invariant density

O0=:z=1, 0=a=4

0, otherwise.

Consequently, the LCE A 4 is readily obtained
from (9.1): 4L 4=+ 1 bit. The uncertainty produc-
tion /1 4(1) is greater than A4 because f; 4 has a
contracting action for z € 13/8, 5/8[. From (8.1) we
obtain /i 4(1) = (1.23042 = 0.00002) bit. The un-
certainty production including overlappings in the
limit ¢— 0 is estimated using (24): Hec.p 4(1)
= (1.52564 = 0.00002) bit. In order to test these
results, we have calculated H..p 4(1) via (6), (7),
(3.2), and (2.3), using the invariant ergodic measure
fiL.4, for different e-partitions (1/6=5-2',5-22 ...,
5-2'). An illustration is given in Figure 8. Obvious-
ly we obtain the expected behaviour: the uncertainty
H_. 1 4(1) approaches H.._ 4(1) if the precision 1/¢
of measurement is increased. /. 4(1) and /A 4(1)
are defined in [11]. They give an estimated upper
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1.8
A, (1)
ot bl ———— [H_ (1)
§ y : Hes
% ’ -L,t(’)
= 1.2 Fhy (1)
1.0 A

1 3 5 7 9 n 13 15
-ld5¢

Fig. 8. Logistic equation f; ,: Uncertainty H..| 4(1) about
a future state B, (), if an mmal state B, g, is Known, as a
function of the precision 1/¢ of measurement (points).
Obviously, /4 (1) descrlbes the uncertainty production
more properly than 4, 4. 4, ,(1) and & ,(1) are estimated
lower and upper bounds ofl_HC L 4 (1) (see [11]) which take
into account the effect of overlappings. H., (1) is the
estimated uncertainty production which shoulld approach
H. 4(1)as1/e > +o0.

and lower bound of H..; 4(1) which are expected to
be valid even for relatively small precisions 1/¢ of
measurement. /1 4(1) and /y 4(1) were derived
from the assumption that for every box of the
partition the most unfavourable and favourable case
of overlapping occurs, respectively, whereas, in
contrast to the explanation above, no use was made
of the fact that possibly not for all boxes the most
unfavourable respectively favourable case is realized
at the same time.

5. The Influence of External Noise
on the Possibility of State Prediction

In this section we present some elementary inves-
tigations of the effect of additive external noise on
the uncertainty production after one time step
(/=1). We assume that the noise is given by a time
discrete stationary stochastic process {&,}72 such
that every random variable ¢&,, n=1,2,3,..., is
independent of the former &,,, m=0,1,2,...,n—1,
and all random variables &, are assumed to be
uniformly distributed over the interval [—1,1]. In
the following the noise power is given by o. A
realization of the stochastic process is multiplied by
o and then added to the right side of the 1-D map f
which maps the interval [0, 1] onto itself:

Zn+1 =f(:n) +o- én (mOd l) Efa(:n)'

The (mod 1)-transformation guarantees that the
orbit remains in [0, 1].

(25)
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In general the stationary probability density o,,
defining the stationary measure f,, differs from the
invariant density o belonging to the deterministic
map f. 0, is expected to be typically “more smooth”
than o (see e.g. [12]). In the following we presume
e-partitions which are fine enough such that the
slope df/dz and the invariant density o are nearly
constant in most boxes B,, u=1,2,..., M, of the
partition.

Now we decompose the stochastic action of f, on
the box B, in two steps: In the first step B, is
mapped deterministically by f on an interval [a,, b,[
=f(B,). Under the assumptions given above this
first step is equivalent to mapping an ensemble of
points, which are approximately uniformly dis-
tributed over B,, on [a,,b,[. Because the slope
df/dz is assumed to be nearly constant in B,, the
points of the ensemble will be nearly uniformly
distributed over [a,, b,[ after the action of f as well.
In the second step we add the random variable ¢ ¢,
which is uniformly distributed over [— g, d].
order to obtain the resulting transition probability
density d,(z), we now have to distinguish between
two cases:

() Qo< by—ay)

z—a,+o _ "
—_— aq,—6=z<a,+to,
(b,—a,) 20 * i
1, i (2) : + b
d,i)y@ =9 ——, a,+oc=z<b,—o
bu_au
b,+o—:
R bj—o=z=b,+o0,
(by—a,) 2o
0, otherwise;

(i) Qo= b, —ay,)

I—-a,to _ b
—_— !\ a,—0=:z<b,—o0,
(b, —a,) 20 g e
1

dy i (2) = S by—o=z<a,+o,
b,+o—:
U
——\ aq,t0=z=b,+0
(b,—a,) 20 & #
0, otherwise.
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If the support of d, (case (i) or (ii)) exceeds the
interval [0, 1], a modified density

+ o0
Y dyz+i), 0=:z<1,
di@=41 7
: 0. otherwise,

has to taken. This modification of d, corresponds to
the (mod 1)-transformation in (25). Now we obtain
the transition probabilities p,, (1), v=1,2,..., M,

as follows (using the abbreviation s, = |df/dz|.c3,|.
and hence b, —a, =5, - ¢):
j F@(2)dz, 20<s, ¢,
Pl = (26)
[ dra()dz, 2025, ¢
By
z f(z)
i
0<s<s(.‘c/2/_9“+°. . i
6:=0 ’ ;.:;
™~ s b/‘_' 26
7
- 9«_5 -4 !
Ap
Ay,
8, i
[ |
\ . |
3 oo ‘
Y- a-6 -4 ;
dui)(2) e 4 \
1 5. | z
b.-q . a)
o
z f(z)
635.8/2
R
0 ] 707 <K
o p 2 brs_ N4 | 267
— Q.+ R |
A
N Xy S SNV N
I o i
i (2) T 1 ™ Ay,
LB
1 I B{« ‘ V4
26 — L

Fig. 9. Schematic illustration of the effect of additive
external noise (equally distributed in [~o,0]) on the
transition probability density d,(z). For sufficiently small
noise power (Fig. 9a) external ‘noise effects a decrease of
the steepness of the flanks of d,(z) only. For sufficiently
strong noise (Fig.9b) also the plaleau of d,(z) decreases
— in this case the uncertainty production s determined
mainly by the external noise.
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A survey on the considered situation is given in
Fig. 9, assuming that the support of d, does not
exceed the interval [0, I[. In the noisy case the graph
of f can be considered to be a “noisy band” such
that a vertical line cuts the noisy band at a length
2. Two vertical lines which are passing the left and
right boundary of the box B, cut an area 4, out of
the noisy band which is marked by a lining. On the
other hand, two horizontal lines which pass the
upper and lower boundary of a “target box” B,, cut
an area A4,,, out of 4, which is marked by a double
lining. Hence, the relative content of A4,, with
respect to that of 4, gives the transition probability
pv‘/y(l)-

There is a variety of situations which include
overlappings. Nevertheless, in order to obtain
“convenient” results we neglect overlappings now.
At first we consider the case (i). Thus, in the central
interval [a, + 0, b, — o] approximately int (s, —2d/¢)
boxes B,,,i=1,2,..., int(s, — 20/¢), can be placed,
and the corresponding transition probabilities
Pvsu (1) amount to 1/s,. (Note that this is the same
transition probability as in the noiseless case which
was considered in Section 2.) One “flank™ of d, ;
contains approximately int(2¢/¢) boxes B,, j=
1,2,...,int(20/¢), and the corresponding transition
probabilities equal [1 — ¢(j — 1/2)/(20)]/s,. For the
remaining flank we find the transition probability
20— ¢-int(20/¢)]*/(4s,¢0). Via (3.2) we now
obtain for the uncertainty production

20
H.(Lp=|l-——|1ds,
S, €

u

int(20/¢) 1 &
-2- {—[1——(;—1/2)]...
20

j=1 Sy

| [t 2
0 5o (j— )}

_ (2o—c¢int(20/e))’? » (2o — ¢int(20/¢))?
2s,¢e0

. (27)

4s,¢0

For a small noise power (20/¢ < 1) we obtain from
(27):
20 e
H(l,py)=1lds,+—1d—. (28)
i€

ag

The Equations (27) and (28) provide exact results if
s,—20/¢ is an (positive) integer, and if a,+ o
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coincides with a divisional point of the e-partition,
which guarantees that overlappings will not occur.
From (28) follows that H.(l,x) approaches the
noiseless uncertainty production Ids,, if ¢ <s,e
Le., if the noise power ¢ is small compared to the
length of f(B,). the noise induced uncertainty
production is expected to be negligible as compared
to the uncertainty production by the deterministic
chaotic dynamics.

Let smin label the minimum value of the slope of

[: Smin = ix{lof” df(z)/dz|. If smin 1S greater than
z€e|0,

" zero the precision 1/¢ of measurement has to fulfil 1/

< Smin/0 = 1/, In order to have an uncertainty
production which is mainly caused by the deter-
ministic action of £ Otherwise the external noise
may considerably affect the uncertainty production.
(It should be mentioned that the condition &> epi,
can be mitigated, if the absolute value of the slope
of f'is small (especially zero) in an area W which
has only a small stationary measure (i,(W) < 1).)

A similar investigation can be made for the case
(i1) (strong noise). From a simple analysis we obtain
in this case

20 e

int s, - -
_Z'Z (—;—[l—-] Uz]ldi[l—'l 1/2]}
=1 (20 20

8, s

Hc(l,y)z(l— s“6)1d—‘7

M

(s, —ints,)? . (s, —ints,)?

1d

(29)

2s,0 4s,0

If the slope is small (s, < 1), we obtain from (29)

H.(l,p)=1d2g/e+¢s,/(20)1d 2/s,.  (30)

The Equations (29) and (30) provide exact results, if
20/e—s, is a positive integer and if a,+o0 is a
divisional point of the partition. If we have even
s,€/2 <0 (and s, < 1), the uncertainty production
is mainly noise determined. Under this assumption
we obtain
Hc(l,y)zld%a—. (31)
In order to illustrate the influence of external
noise on the uncertainty production, we have
calculated the transinformation Iy, 136 for the
noisy M-map. In Fig. 10 the results are plotted for
different values of the noise power 0. For o=
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T, py s )70t

L/iteration

Fig. 10. Transinformation /., 1,6(/) of the noisy M-map
versus prediction period / using the e-partition 3.
Parameter: noise power J/V§ =0 (a), 0.01 (b), 0.02 (c),
0.03 (d), 0.04 (e), 0.05 (f), 0.06 (g). (Curve (a) was
obtained using the invariant measure [, ., while all
other curves were obtained operationally from time series
of length m = 20 000.)

}/3-0.03 ~ 0.052 (case d in Fig. 10) the uncertainty
production after one iteration (/= 1) can be readily
estimated: In the intervals 7, =[0,1/6] and 1=
[5/6, 1] the absolute value of the slope equals 6.
Hence we obtain s, ¢/2=0.083 > ¢, i.e. we have to
deal with case (i) for the boxes B,, u=1,2,...,
6.31,32,...,36. From (27) we obtain H!»3(1, u)
% 3.06 bit. In the interval I, =[1/6, 5/6[ s, equals
1/2, and we obtain s, ¢/2 ~ 0.007 < g, i.e. we can
use (31) which leads to HZ(1,u) = 1.90 bit.
Numerical investigations show that the stationary
density 0,. u,.1/36 does not essentially differ from the
invariant density 04713 Hence H[»'s(1,u) and
H!:(1, 1) have a statistical weight of about 3/5 and
2/5, respectively. Thus we obtain the average un-
certainty production H¢., 1/36(1) & 2.60 bit. This
roughly estimated value is in good correspondence
with the operationally obtained value Hc. . 1/36(1)
= (2.66 £ 0.01) bit. Of course, we do not expect that
we always obtain such a good correspondence be-
tween the estimated and the actually observed
values because in (27)—(31) overlappings were
neglected. Exact values of H (1) can be obtained
using (26) and (3.2). However, arguments similar to
those used in Section 4 suggest that the additional
uncertainty production by overlappings is at most of
the order of 1bit also in the noisy case.

This consideration makes evident that external
noise typically increase the (average) uncertainty
production. Nevertheless, also the reverse may be
true. This is the case in maps showing a so-called
“noise-induced order” (see [13]), where the statio-
nary density o, may differ considerably from the
invariant density 0 =p,-o such that some regions
which are characterized by a large value of the
slope of f are less frequently visited by the noisy
orbit. Hence external noise may also improve the
state predictability.

6. Conclusion

An essential question in many sciences is that for
the prediction of future states of a dynamical
system. To give an answer to this question scientists
usually proceed as follows: First they construct a
state space, then they derive (deterministic) equa-
tions of motion governing the time evolution of the
system, and finally they measure the initial state in
order to specify just one orbit of an ensemble. A
precise implementation of this algorithm would
provide a satisfactory answer to the question for
future state, but this may involve immense prob-
lems. Especially it may be very difficult to find a
complete state space and a manageable set of
equations of motion. However, in this paper we
assume that these problems have been satisfactorily
solved and that we have a low-(one-)dimensional
map which describes the time evolution at every
discrete time step n=0,1,2,.... (In Sect. 5 the
effect of external noise is investigated, which may
represent the influence of “disregarded degrees of
freedom”.) Moreover, scientists have to take into
consideration that all states of a dynamical system
can be measured only within a finite precision. If
the system is a stable one, a small change of the
initial state would not essentially alter its time
evolution. A future state would be called “predict-
able” in this case because it can be predicted within
the precision of measurement. On the other hand,
already Henri Poincaré [14] pointed out that there
may be quite different situations. It may happen
that we have to deal with an unstable system such
that any error in the measurement of the initial state
causes a great error in the prediction of the future
state, i.e., state predictions are limited or even
impossible. This is the situation in chaotic systems.
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In this paper we have investigated the con-
sequences of a limited precision of measurement for
the possibility of state prediction in the light of
information theory. The term “state” as specified in
this paper means that states which are not resolv-
able by the measuring apparatus can be considered
to be equivalent to each other. Then we have asked
for the information on a future state under the
condition that an initial state is known. This infor-
mation is given by [I,(/)= H;— H.(/), where H;
corresponds to the maximum information which is
attainable on a future state, and H.(/) gives the
uncertainty on a future state under the condition
that an initial state is known (/=0,1, 2, ... labels
the prediction period). For a stable periodic motion
of period p the maximum information H; cannot
exceed Idp bit. This limit is attained if the
precision 1/¢ of measurement is large enough such
that the periodic attractor is resolved. A further
increase of 1/& would not provide more information.
The transformation /,(/) of a stable periodic motion
is periodic with a period p* = p. If the periodic
attractor is resolved, we have I,(/) = H;, i.e., from
the measurement of the initial state, all future states
are known.

The situation is quite different if we have a
motion on a chaotic attractor. In this case the
information H; goes to infinity as the precision of
measurement goes to infinity (H; — — D;ld ¢ if
¢ — 0, where D, is the information dimension of
order 1 [8]). On the other hand, the uncertainty
production H(/) will remain finite but positive at
every level of measuring precision. There are three
sources that contribute to the production of un-
certainty on a future state (under the condition that
an initial state is known within a finite precision):
Firstly, an expanding action of phase flow (“intrinsic
noise”) contributes to the uncertainty production.
For chaotic systems the mean rate of exponential
expansion is given by the Lyapunov characteristic
exponent (LCE). In Sect. 2 of this paper we have
investigated relations between the uncertainty pro-
duction and the LCE. We argue that uncertainty is
produced only in regions of state space which have
been expanded by the flow of the dynamical system,
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uncertainty on the future state is produced. More-
over, contracted regions cannot effect a reduction of
the uncertainty which is simultaneously produced in
expanded regions. From this point of view we
define a quantity /1 (/) (see (10.1)) which is related
to the LCE (see (10.3), (11), and (12)), and which
gives the uncertainty production by the intrinsic
noise. Secondly, uncertainty on a future state can be
produced as a result of the measuring process (over-
lappings). From Sect. 4 we see that at most | bit
uncertainty is produced in addition to /4 (/) by over-
lappings. For a sufficiently fine ¢-partition a formula
is derived (see (24)) which estimates the uncertainty
production including overlappings for 1-D maps
characterized by continuous variations of the slope.
Thirdly, uncertainty can be produced by external
noise (see Sect. 5). However, if the noise power is
small compared to df/dz e and if the stationary
density of the noisy map does not essentially differ
from the invariant density of the noiseless map, then
the noise induced uncertainty production is expect-
ed to the negligible in comparison to that caused by
intrinsic noise.

Appendix: Some More Examples

For a further illustration of the main results of
this paper we give some more examples: In Fig. Al
we present three one-parameter families f},,

j=1,2,3, of 1-D maps including their invariant

densities o, ,. (The time-correlation function of f; 4
was already considered in [15].) From (9.1) we
obtain the LCEs:

] 52a
/'..,,=;—]ld 2*(1—-2a) 2 >0 for O<a<1/2,

1
).2_1=;—lldoc’(l—oc)“‘“>>0 for 0<a<]1,

J3a=—31da??(1-a?)1= >0

for 0<a<1.

The uncertainty production follows from (10.3) and
(11):
B a (D) =12;4+ 6,4()

whereas in regions which have been contracted no  with
1= 21 +1)72 1=72 (+1)/2 1= 2n (+172
: £ ) (- 2%) i I=1,3 5. md 2= g,
51.1(1) = (1—u) - x
0 otherwise,
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rf if 0SZ2<oL ﬁ—ﬁ—x if 0S2<7]-o ;fiﬁ#z OS2 <71-o
£, (2)= NCS
2pt y 3 L
94(2}‘“’;3:2*7”‘ if oLSZ<1-e 70(’_2 Frosz<t |” 1-z el <2<
O<°¢<§7 7:"—2- if 1-l<s2< 1 | O<<1 0<«x<1
\
1 1 1 :
1 ;
T-olt T-ol T+l 1- :
© ) Q) ;
X i 3 )
1
. T
0 ol - 1 0 -t 7 0 < 1
iz Z F
! ' i ! ] <2z <71-« T+ <z<o—t-
201-<) If 0s2<7]-ol 5 if 0sz2<1 5 0 z<7+d
97 YSall L% 14 1
' g if 1-oLS ’ if 1-o(<2<1 [ 1 <z<
2 bt =i 1 2 i
Q ) ®
S k] X
5 N Gy
0 - 1 0 - 1 0 11
F Z Z T+

Fig. Al. Three one-parameter families

alternately expanding and contracting.

(1= o)+ (] = )U+12
02.4(1) = 2—x %

0

(1= x2)+D2 (] = g2+
03.5(1) = 2 = x

0

if /=1,3,5,...

otherwise,

if /=135, ...

otherwise.

of 1-D maps including their invariant densities. The maps act essentially

- (I+1)72
g LB

| — g2)U+D72
and h Ul il 1) -
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4

h, L0/bit

Fig. A2. Uncertainty A, , (/) on a future state, if an initial
state is known, as a function of the control parameter « for
the map f; ,. Parameter: prediction period / (=1, 2, ...,7).
The dashed lines represent /- J; ,. For sufficiently large
values of a, /-, , coincides with h; (/). However, for
small values of «, ZM(I) differs considerably from /- 4, ,
because f; , has a contracting action in certain regions.

An illustration of /s ,(/) is given in Figure A2.
(We will consider only f3 , because f, , and f, , are
characterized by properties similar to those of f3 ,.)
If the prediction period / is an even (positive)
integer, the uncertainty production /3 ,(/) is given
by /- /3 , because in this case fi, shows an expand-
ing effect almost everywhere in [0, 1]. The same
applies, if / 1s an odd integer and the value of the
control parameter x is large enough such that «
fulfils the inequality (1 — 2?)“*D2> 4. On the other
hand, if / is odd and small enough, f¥, has a
contracting effect in certain regions of the interval
[0, 1]. Consequently, the uncertainty production is
greater than /- /3, in this case. Moreover, for any
fixed value of the control parameter « € ]0, 1[ we
find a smallest integer /¥, such that /; , (/) =1 13,
for /> 1% ,, i.e., f{, has an expanding action almost
everywhere in [0,1] for /> /5,. If a approaches
zero, I, goes to infinity and the correction term
03,5(/) (/ odd and fixed) goes to infinity as well. On
the other hand, /- 4; , approaches zero as « goes to
zero. Thus the correction term J; , (/) becomes the
more important the more « approaches zero.

In order to explain the great uncertainty produc-
tion after one time step for small values of o« we

Hi=h, (1)

Hr2 1 =77
«=4/20 l3,=2391  «-1/20
0 2 4 6 8 2 4 6 8§ 10

{/iteration

Fig. A3. Estimation of the transinformation I,.;,(/)
H;— hy ,(I) as a function of the prediction period lafgor the
map f; ,. The dashed line gives the plot H; — /- 4, ,.

assume an (“fine”) e-partition such that 1/M=¢
al l1+a
By, covers the small intervall I, =[1/(1+ ), 1].
The initial information H; is easily obtained from
(1.2): Hi=1+$1d(M —1). One bit corresponds to
the information whether the orbit is in B, or not.
11d (M —1) is the information on that box out of
(B,}M-! which contains the orbit. The factor 1/2
refers to the statistical weight of these boxes. The un-
certainty production after one time step can be found
as follows: If the orbit starts in I, =[0, 1/(1+ a)[,
no uncertainty is produced after one time step
because the orbit can reach only one box, namely
Bj;. On the other hand, if the orbit starts in By, it
may reach any point in /, after one time step. The
corresponding uncertainty production is given by
Id(M—1). The statistical weight of this event is
1/2. Consequently, the average uncertainty H.3 ,(1)
equals +1d (M —1). (Of course, H..3,(1) could be
obtained immediately from (2.3) as well.) Hence,
H;— H. ;3 ,(1)=1bit gives the average information
on a future state after one time step. This is the
information whether the orbit is in B, or not. After
a further time step (/=2) most uncertainty, pro-
duced by the drastical expansion of B, after the
first iteration, is destroyed due to the contracting
action of f3 , on f3,(By). Hence the initial state
contains much more information on the position of
the orbit after two iterations than on that after one

(M integer). Hence just one box, say
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time step. This consideration can be repeated for
> 2.

An alternating expansion and contraction and the
corresponding information (resp. uncertainty) flow
described above is a typical property of the maps
investigated in this paper (M-map and f;,, j =1, 2, 3).
In a plot of the transinformation /.3 ,(/) =
H;— hs (/) as a function of the prediction period /
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